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We investigate a structural (axiomatic) approach related
to combinatorial topology and simple homotopy.

We use completions as a ”language” for describing
collections of objects.

We consider objects that are simplicial complexes.
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Topological space

A topological space is a set X together with a collection of
subsets of X , called open sets and satisfying the following
axioms:

The empty set and X itself are open.

Any union of open sets is open.

The intersection of any finite number of open sets is open.

A map f : X 7→ Y between topological spaces X and Y is
called continuous if the inverse image of every open set is open.
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Alexandroff spaces and preorders

When considering finite sets, a topological space is an
Alexandroff space, i.e., a topological space in which the
intersection of any arbitrary family (not necessarily finite)
of open sets is open.

There is a correspondance between Alexandroff spaces and
preorders (binary relations that are reflexive and
transitive).

To any Alexandroff space, we may associate a preorder ≤
such that x ≤ y if and only if y is contained in all open
sets that contain x .

Conversely, a preorder determines an Alexandroff space: a
set O is open for this space if and only if x ∈ O and x ≤ y

implies y ∈ O.
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Continuous and monotone maps

A map f between two preordered sets X and Y is monotone if
x ≤ y in X implies f (x) ≤ f (y) in Y .

A map between two preordered sets is monotone if and
only if it is a continuous map between the corresponding
Alexandroff spaces.

Conversely, a map between two Alexandroff spaces is
continuous if and only if it is a monotone map between
the corresponding preordered sets.

Thus, there is a perfect structural equivalence between finite
topological spaces and preorders.
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Continuous retraction (1)

Let us consider the two discrete objects X and Y . The object
X is made of 6 vertices and 6 edges.
A natural preorder ≤ between all these elements is the partial
order corresponding to the relation of inclusion between sets.
Thus, we have b ≤ a and c ≤ a.
We see that there exists a monotone map f between X and Y

such that f is the identity on all elements of Y , and f (a) = c ,
f (b) = c .
Thus, Y corresponds to a continuous retraction of X .

b

a
c

X Y
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Continuous retraction (2)

Now, let us consider the following objects X and Y .
We have d ≤ a ≤ b and c ≤ b.
We see that it is not possible to build a monotone map f

between X and Y , f being the identity on all elements of Y .
For example, if we take f (a) = c , f (b) = c , we have d ≤ a,
but we have not f (d) ≤ f (a).

b
d

a c

X Y

Thus, in this construction, the classical axioms of topology fail
to interpret Y as a continuous retraction of X .
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Simplicial complexes and completions
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Simplicial complexes

Let X be a finite family composed of finite sets, X is a
simplicial complex if x ∈ X whenever x ⊆ y and y ∈ X .

We write S for the collection of all simplicial complexes.

Let X ∈ S. An element of X is a face of X .

A complex A ∈ S is a cell if A = ∅ or if A has precisely one
non-empty maximal face x .

We write C for the collection of all cells.
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Simplicial complexes
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Completions

A completion may be seen as a rewriting rule which
permits to derive collections of objects.

Completions allows to formulate, in an easy way, inductive
definitions.
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Completions

Let K be an arbitrary sub-collection of S, K is a dedicated
symbol (a kind of variable).

We say that a property 〈K〉 is a completion (on S) if 〈K〉
may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever Cond(F,G). 〈K〉
where Cond(F,G) is a condition on a finite collection F

and an arbitrary collection G.

Theorem: Let 〈K〉 be a completion on S and let X ⊆ S.
There exists, under the subset ordering, a unique minimal
collection K which contains X and which satisfies 〈K〉.

We write 〈X;K〉 for this unique minimal collection.

If 〈K〉 and 〈Q〉 are two completions, 〈K〉 ∧ 〈Q〉 is a
completion, the symbol ∧ standing for the logical “and”.
We write 〈X;K,Q〉 for 〈X;K ∧Q〉.
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Example of a Completion: Connectedness

We define the completion 〈Υ〉 as follows:

−> If S ,T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ〉
We set Π = 〈C; Υ〉, Π is precisely the collection of all simplicial
complexes which are (path) connected.
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Example of a Completion: Connectedness

We define the completion 〈Υ〉 as follows:

−> If S ,T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ〉
We set Π = 〈C; Υ〉, Π is precisely the collection of all simplicial
complexes which are (path) connected.

We see that this completion is an alternative to the classical
definition of connectedness. Furthermore it provides a
constructive way for generating all connected complexes.
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Dendrites

Motivation:
To describe a remarkable collection of acyclic complexes.
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Dendrites: the basic idea

Let X and Y be two trees.
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X Y X ∩ Y

☛
✡

✟
✠

X ∪ Y is a tree whenever X ∩ Y is a tree
X ∩ Y is a tree whenever X ∪ Y is a tree
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Dendrites: the axioms

We define the completions 〈D1〉 and 〈D2〉 as follows:

For any S ,T ∈ S,

−> If S , T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S , T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
We set D = 〈C;D1,D2〉. Each element of D is a dendrite.
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Dendrites: the axioms

We define the completions 〈D1〉 and 〈D2〉 as follows:

For any S ,T ∈ S,

−> If S , T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
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Dendrites: the axioms

We define the completions 〈D1〉 and 〈D2〉 as follows:

For any S ,T ∈ S,

−> If S , T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S , T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
We set D = 〈C;D1,D2〉. Each element of D is a dendrite.

✎
✍

☞
✌

Let T denote the collection of all trees. We have :
T = 〈C[1];D1,D2〉
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Dendrites: the axioms

We define the completions 〈D1〉 and 〈D2〉 as follows:
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We set D = 〈C;D1,D2〉. Each element of D is a dendrite.

A global structure

A dynamic structure
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Dendrites: the axioms

We define the completions 〈D1〉 and 〈D2〉 as follows:

For any S ,T ∈ S,

−> If S , T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S , T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
We set D = 〈C;D1,D2〉. Each element of D is a dendrite.

We set R = 〈C;D1〉. Each element of R is a ramification.
Thus, we have R ⊆ D.✎

✍
☞
✌

Let T denote the collection of all trees. We have :
T = 〈C[1];D1,D2〉 = 〈C[1];D1〉
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Dendrites: dendrites and homology

We define the completions 〈D1〉 and 〈D2〉 as follows:

For any S ,T ∈ S,

−> If S , T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S , T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉
We set D = 〈C;D1,D2〉. Each element of D is a dendrite.

✎
✍

☞
✌

It may be shown that a complex is a dendrite if and
only if it is acyclic in the sense of integral homology.
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Dendrites: dendrites and homology

We define the completions 〈D1〉 and 〈D2〉 as follows:
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It may be shown that a complex is a dendrite if and
only if it is acyclic in the sense of integral homology.
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Motivation:
We want to describe collection of arbitrary complexes

(complexes that are not necessarily acyclic).
It turns out that the good way to proceed was to consider

couple of complexes.
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Dyads

Intuitively, a dyad is a couple of complexes (Y ,X ), with
Y ⊆ X , such that the cycles of Y are “at the right place with
respect to the ones of X”.

Three complexes X , Y , and Z , with Y ⊆ X and Z ⊆ X :

X Y Z

The pair (Y ,X ) is a dyad, the pair (Z ,X ) is not a dyad.
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Dyads: the basic idea

We set S̈ = {(Y ,X ) | X ,Y ∈ S, with Y ⊆ X}.

We proceed by considering completions on S̈.
(instead of S)

Three complexes R , S , and T , with R ⊆ S :

R S T

Two objects R , S which constitute a dyad (R ,S). An object T
which is glued to S . The couple (S ∩ T ,T ) is a dyad, thus
(R ,S ∪ T ) is also a dyad.
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Dyads: the basic idea

We set S̈ = {(Y ,X ) | X ,Y ∈ S, with Y ⊆ X}.

We proceed by considering completions on S̈.
(instead of S)

Three complexes R , S , and T , with R ⊆ S :

R S T

Two objects R , S which constitute a dyad (R ,S). An object T
which is glued to S . The couple (S ∩ T ,T ) is a dyad, thus
(R ,S ∪ T ) is also a dyad.
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Dyads: the axioms

We set C̈ = {(A,B) | A,B ∈ C, with A ⊆ B}.

We define the three completions on S̈ as follows: For any
(R ,S) ∈ S̈, T ∈ S,

−> If (R ,S) and (S ∩ T ,T ) ∈ K̈, then (R ,S ∪ T ) ∈ K̈. 〈Ẍ1〉
−> If (R ,S) and (R ,S ∪ T ) ∈ K̈, then (S ∩ T ,T ) ∈ K̈. 〈Ẍ2〉
−> If (R ,S ∪ T ) and (S ∩ T ,T ) ∈ K̈, then (R ,S) ∈ K̈. 〈Ẍ3〉

We set Ẍ = 〈C̈; Ẍ1, Ẍ2, Ẍ3〉. Each element of Ẍ is a dyad.

These completions constitute a set of axioms for describing
couple of complexes which have “the same topology” and
which are “at the right place with respect to each other”.
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Confluence

Motivation:
We want to describe a fundamental structure of dyads

(some fundamental relationships).
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Confluence: the basic idea

Three complexes R , S , and T , with R ⊆ S ⊆ T :

R S T

✓

✒

✏

✑
A structural feature of dyads:

If (R ,S) and (S ,T ) are dyads, then (R ,T ) is a dyad.
(Transitivity)
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Confluence: axioms (1)

Three complexes R , S , and T , with R ⊆ S ⊆ T :

T

S
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

R

T

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

S
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

R

T

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

S
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

R

Transitivity Upper confluence Lower confluence

We define the three completions on S̈ as follows:
For any (R ,S), (S ,T ), (R ,T ) ∈ S̈,

−> If (R ,S) ∈ K̈ and (S ,T ) ∈ K̈, then (R ,T ) ∈ K̈. 〈T̈〉
−> If (R ,S) ∈ K̈ and (R ,T ) ∈ K̈, then (S ,T ) ∈ K̈. 〈Ü〉
−> If (R ,T ) ∈ K̈ and (S ,T ) ∈ K̈, then (R ,S) ∈ K̈. 〈L̈〉



An Axiomatic

Approach for

Combinatorial

Topology

Gilles

Bertrand

Confluence: axioms (2)

We define the two completions on S̈ as follows:
For any S , T ∈ S,

−> If (S ∩ T ,T ) ∈ K̈, then (S ,S ∪ T ) ∈ K̈. 〈Ÿ1〉
−> If (S ,S ∪ T ) ∈ K̈, then (S ∩ T ,T ) ∈ K̈. 〈Ÿ2〉

S
T

S
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Confluence: the confluence theorem

✞
✝

☎
✆Theorem: We have Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉.

This theorem provides another way to generate the collection
of all dyads. Furthermore it shows the importance of the
structural relations 〈T̈〉, 〈Ü〉, and 〈L̈〉.
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Confluence: the confluence theorem

✞
✝

☎
✆Theorem: We have Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉.

This theorem provides another way to generate the collection
of all dyads. Furthermore it shows the importance of the
structural relations 〈T̈〉, 〈Ü〉, and 〈L̈〉.
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Relative dendrites

Motivation:
We want to establish a link between dyads and dendrites.
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Relative dendrites: relative dendrites

We define two completions on S̈: For any (S ,T ), (S ′,T ′) ∈ S̈,

−> If (S ,T ), (S ′,T ′), (S ∩ S ′,T ∩ T ′) ∈ K̈, then
(S ∪ S ′,T ∪ T ′) ∈ K̈. 〈Z̈1〉
−> If (S ,T ), (S ′,T ′), (S ∪ S ′,T ∪ T ′) ∈ K̈, then
(S ∩ S ′,T ∩ T ′) ∈ K̈. 〈Z̈2〉
Each element of 〈C̈+; Z̈1, Z̈2〉 is called a relative dendrite.

ST

T’ S’
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Relative dendrites: the relative dendrites theorem

We define two completions on S̈: For any (S ,T ), (S ′,T ′) ∈ S̈,

−> If (S ,T ), (S ′,T ′), (S ∩ S ′,T ∩ T ′) ∈ K̈, then
(S ∪ S ′,T ∪ T ′) ∈ K̈. 〈Z̈1〉
−> If (S ,T ), (S ′,T ′), (S ∪ S ′,T ∪ T ′) ∈ K̈, then
(S ∩ S ′,T ∩ T ′) ∈ K̈. 〈Z̈2〉
Each element of 〈C̈+; Z̈1, Z̈2〉 is called a relative dendrite.

✓

✒

✏

✑
Theorem: We have Ẍ = 〈C̈+; Z̈1, Z̈2〉.
In other words a complex is a dyad if and only if it is a
relative dendrite.

This theorem provides a third way to generate the collection of
all dyads. Furthermore, it allows to establish the forthcoming
cancelation theorem.
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Theorem: We have Ẍ = 〈C̈+; Z̈1, Z̈2〉.
In other words a complex is a dyad if and only if it is a
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This theorem provides a third way to generate the collection of
all dyads. Furthermore, it allows to establish the forthcoming
cancelation theorem.
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Relative dendrites: the cancelation theorem

A couple (X ,Y ) which is a dyad, and a cone aX :

X
Y
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✎
✍

☞
✌

Theorem: Let (X ,Y ) ∈ S̈. The couple (X ,Y ) is a dyad
if and only if aX ∪ Y is a dendrite.

Intuitively, this theorem asserts that, if (X ,Y ) is a dyad, then
we cancel out all cycles of Y (i.e., we obtain an acyclic
complex), whenever we cancel out those of X (by the way of a
cone). Furthermore, it asserts that, if we are able to cancel all
cycles of Y by such a way, then (X ,Y ) is a dyad.
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☞
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Theorem: Let (X ,Y ) ∈ S̈. The couple (X ,Y ) is a dyad
if and only if aX ∪ Y is a dendrite.

Intuitively, this theorem asserts that, if (X ,Y ) is a dyad, then
we cancel out all cycles of Y (i.e., we obtain an acyclic
complex), whenever we cancel out those of X (by the way of a
cone). Furthermore, it asserts that, if we are able to cancel all
cycles of Y by such a way, then (X ,Y ) is a dyad.
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Relative dendrites: the cancelation theorem

A couple (X ,Y ) which is a dyad, and a cone aX :
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Theorem: Let (X ,Y ) ∈ S̈. The couple (X ,Y ) is a dyad
if and only if aX ∪ Y is a dendrite.

Intuitively, this theorem asserts that, if (X ,Y ) is a dyad, then
we cancel out all cycles of Y (i.e., we obtain an acyclic
complex), whenever we cancel out those of X (by the way of a
cone). Furthermore, it asserts that, if we are able to cancel all
cycles of Y by such a way, then (X ,Y ) is a dyad.
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Homotopic pairs

Motivation:
We want to make a link between previous completions and

(simple) homotopy.
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Homotopic pairs: simple homotopy

Let X ∈ S. A face x ∈ X is free for X if x is a proper face of
exactly one face y of X , such a pair (x , y) is a free pair for X .
If (x , y) is a free pair for X , Y = X \ {x , y} is an elementary
collapse of X and X is an elementary expansion of Y .
The complex X collapses onto Y if Y may be obtained from X

by elementary collapses.
Two complexes are (simply) homotopic if one of them may be
obtained from the other by elementary collapses and
expansions.

An object X and an elementary collapse of X :

yx
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Homotopic pairs: contractible complexes

A complex is (simply) contractible if it is simply homotopic to
a single vertex.

✞
✝

☎
✆Proposition: Any contractible complex is a dendrite.
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Homotopic pairs: contractible complexes

A complex is (simply) contractible if it is simply homotopic to
a single vertex.

✞
✝

☎
✆Proposition: Any contractible complex is a dendrite.
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Homotopic pairs: the dunce hat

✞
✝

☎
✆Proposition: Any contractible complex is a dendrite.

The dunce hat is a contractible complex. It is an example of an
object that is a dendrite but not a ramification.

a a

a

a

a
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Homotopic pairs: homology and homotopy

✞
✝

☎
✆Proposition: Any contractible complex is a dendrite.

There exist some dendrites that are not contractible. The
punctured Poincaré homology sphere provides an example of
this fact. Thus, the collection of contractible complexes is a
proper subset of the collection of dendrites.

We would like to have a better understanding of the links
between dendrites (or dyads) and homotopy.
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Homotopic pairs: homology and homotopy

✞
✝

☎
✆Proposition: Any contractible complex is a dendrite.

There exist some dendrites that are not contractible. The
punctured Poincaré homology sphere provides an example of
this fact. Thus, the collection of contractible complexes is a
proper subset of the collection of dendrites.

We would like to have a better understanding of the links
between dendrites (or dyads) and homotopy.
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Homotopic pairs: a basic idea

X

We try to take benefit of all the previous completions that act
on pairs rather than a single complex.
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Homotopic pairs: a basic idea

Y
X

The pair (Y ,X ) is a dyad:
we observe that, in this example, it is possible to continuously

deform X onto Y while keeping Y inside X .
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Homotopic pairs: a basic idea

Y
X

It follows the idea to consider 4 elementary moves
H1,H2,H3,H4.

This moves may be seen as “relative collapses/expansions”.
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Homotopic pairs: a basic idea

X
YH1

H1 is an expansion of X.
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Homotopic pairs: a basic idea

Y
X

H1 H2

H2 is a collapse of X constrained to keep Y inside X .
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Homotopic pairs: a basic idea

Y
X

H1
H3

H2

H3 is an expansion of Y constrained to keep Y inside X .
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Homotopic pairs: a basic idea

Y
X

H1
H4

H2
H3

H4 is a collapse of Y .
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Homotopic pairs: the axioms

If X ,Y ∈ S, we write X
E

7−→ Y , whenever Y is an elementary
expansion of X . We define four completions on S̈:

For any (R ,S), (R ,T ), (S ,T ) in S̈,

−> If (R ,S) ∈ K̈ and S
E

7−→ T , then (R ,T ) ∈ K̈. 〈Ḧ1〉

−> If (R ,T ) ∈ K̈ and S
E

7−→ T , then (R ,S) ∈ K̈. 〈Ḧ2〉

−> If (R ,T ) ∈ K̈ and R
E

7−→ S , then (S ,T ) ∈ K̈. 〈Ḧ3〉

−> If (S ,T ) ∈ K̈ and R
E

7−→ S , then (R ,T ) ∈ K̈. 〈Ḧ4〉
We set Ï = {(X ,X ) | X ∈ S} and Ḧ = 〈Ï; Ḧ1, Ḧ2, Ḧ3, Ḧ4〉.
Each element of Ḧ is a homotopic pair.
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Homotopic pairs: The homotopic pairs theorem

✓

✒

✏

✑
Proposition:
We have Ḧ ⊆ Ẍ, i.e., any homotopic pair is a dyad.
Thus, we have Ḧ ⊆ Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉.

✞
✝

☎
✆Theorem: We have Ḧ = 〈C̈; Ÿ1, T̈, Ü, L̈〉.
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Homotopic pairs: The homotopic pairs theorem

✓

✒

✏

✑
Proposition:
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We have Ḧ ⊆ Ẍ, i.e., any homotopic pair is a dyad.
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✆Theorem: We have Ḧ = 〈C̈; Ÿ1, T̈, Ü, L̈〉.

- In a single framework we can express some notions linked to
homology and homotopy.
- We obtain global properties for simple homotopy.
- The collection of all homotopic pairs is fully characterized by
these properties.
- The distinction between dyads (≃ homology) and homotopy
is clear.
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Conclusion

We introduced completions as a language for constructive
and dynamic descriptions of collections of complexes.

These completions correspond to global topological
properties of these collections.

We introduced the notions of dendrites, dyads, relative
dendrites, confluence, homotopic pairs, and we gave
several theorems which show the deep links between these
collections.
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Thank you for your attention !
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Dendrites: duality

Let A ∈ C and X � A. The dual of X for A is the simplicial
complex X ∗

A
, such that X ∗

A
= {A \ x | x ∈ A \ X}, where A is

the ground set of A, i.e., A = ∪{x ∈ X | dim(x) = 0}.
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Dendrites: duality

Let A ∈ C and X � A. The dual of X for A is the simplicial
complex X ∗

A
, such that X ∗

A
= {A \ x | x ∈ A \ X}, where A is

the ground set of A, i.e., A = ∪{x ∈ X | dim(x) = 0}.

✎
✍

☞
✌

Proposition: Let A ∈ C and X � A. The complex X is
a dendrite if and only if X ∗

A
is a dendrite.



An Axiomatic

Approach for

Combinatorial

Topology

Gilles

Bertrand

Relative dendrites: example (1)

ST

T’ S’

�
�
�
�

�
�
�
�

In this figure (S ∪ S ′,T ∪ S ′) and (T ∪ S ′,T ∪ T ′) are dyads.
Then, using 〈T̈〉, it is possible to generate directly
(S ∪ S ′,T ∪ T ′) without the completions defining relative
dendrites.
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Relative dendrites: example (2)

T

S’

S

T’

Now, in this figure, we observe that we can generate
(S ∪ S ′,T ∪ T ′) with the completions for relative dendrites.
Nevertheless (S ∪ S ′,T ∪ S ′) is not a dyad (S ∪ S ′ is acyclic,
while T ∪ S ′ is not). Thus, it is not possible to generate, in a
straightforward manner, the relative dendrite (S ∪ S ′,T ∪ T ′)
with the previous completions for dyads.
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Homotopic pairs: collapsible complexes

Let X be a triangulation of a square. If X collapses onto Y ,
then Y collapses onto a single vertex.

This property is not true if we consider a cube!

The Bing’s house
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Homotopic pairs: the Bing’s house

✞
✝

☎
✆Proposition: Any contractible complex is a dendrite.

For example, the Bing’s house is a dendrite.

We have B = X ∪ Y , and X , Y , and X ∩ Y are dendrites.

B X Y

In fact the Bing’s house is a ramification.
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Homotopic pairs: simple homotopy

✤

✣

✜

✢

Theorem:
Let X ,Y ∈ S and let λY be a copy of Y disjoint from
X . The complexes X and Y are simply homotopic if and
only if there exists K ∈ S such that K collapses onto
both X and λY .

✤

✣

✜

✢

Theorem (Whitehead):
Let X ,Y ∈ S. The complexes X and Y are simply
homotopic if and only if there exists K ∈ S and there
exists a stellar sub-division Ỹ of Y , such that K collapses
onto both X and Ỹ .
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