Mathematical Morphology on a Few Discrete Structures

Isabelle Bloch

LTCI, Télécom ParisTech LTCí 三 = =

isabelle.bloch@telecom-paristech.fr
2019

Lattices and information processing

Lattices: core mathematical structure in many information processing problems.
Examples:
■ soft computing (fuzzy sets, bipolar information),
■ knowledge representation,

- logics,
- formal concept analysis,
- automated reasoning,
- decision making,
- image processing and understanding,
- information retrieval,
- etc.

Mathematical morphology on complete lattices.

Mathematical Morphology for Spatial Information

Matheron (mid-1960's), Serra (1982)

- A theory of space.
- Widely used in image processing and interpretation.
- At different levels (local, regional, structural...).

■ For different tasks (filtering, enhancement, segmentation, interpretation, spatial knowledge modeling...).

Filtering

Segmentation and interpretation

Knowledge modeling What is the region to the right of R ? Is B to the right of R (and to which degree)?

Spatial reasoning

Symbolic and structural representations and reasoning

Image understanding
Preference modeling

Math-Music

Formal framework: complete lattices

- Lattice: (\mathcal{T}, \leq) (\leq partial ordering) such that $\forall(x, y) \in \mathcal{T}, \exists x \vee y$ and $\exists x \wedge y$.
■ Complete lattice: every family of elements (finite or not) has a smallest upper bound and a largest lower bound.
■ Examples of complete lattices:
■ $(\mathcal{P}(E), \subseteq)$: complete lattice, Boolean (complemented and distributive)
- functions of \mathbb{R}^{n} in $\overline{\mathbb{R}}$ for the partial ordering \leq :

$$
f \leq g \Leftrightarrow \forall x \in \mathbb{R}^{n}, \quad f(x) \leq g(x)
$$

- partitions
- fuzzy sets, bipolar fuzzy sets
- rough sets and fuzzy rough sets
- graphs, hypergraphs
- logics (propositional logics, modal logics...)
- formal concepts

Mathematical morphology in a nutshell

Dilation: operation in complete lattices that commutes with the supremum.
Erosion: operation in complete lattices that commutes with the infimum.
\Rightarrow applies in any mathematical framework endowed with a lattice structure.

Using a structuring element:
■ dilation as a degree of conjunction: $\delta_{B}(X)=\left\{x \in \mathcal{S} \mid B_{x} \cap X \neq \emptyset\right\}$,
$■$ erosion as a degree of implication: $\varepsilon_{B}(X)=\left\{x \in \mathcal{S} \mid B_{X} \subseteq X\right\}$.
Derived operators: opening, closing, conditional (geodesic) operations, gradient...
Relaxing the assumption on invariance under translation: structuring elements varying in space (ex: projective geometry, omnidirectional images...).

Adjunctions

$\delta:(\mathcal{T}, \leq) \rightarrow\left(\mathcal{T}^{\prime}, \leq^{\prime}\right), \varepsilon:\left(\mathcal{T}^{\prime}, \leq^{\prime}\right) \rightarrow(\mathcal{T}, \leq),(\varepsilon, \delta)$ adjunction if:

$$
\forall x \in \mathcal{T}, \forall y \in \mathcal{T}^{\prime}, \delta(x) \leq^{\prime} y \Leftrightarrow x \leq \varepsilon(y)
$$

Properties:

- $\delta(0)=0^{\prime}$ and $\varepsilon\left(I^{\prime}\right)=I$.

■ (ε, δ) adjunction $\Rightarrow \varepsilon=$ algebraic erosion and $\delta=$ algebraic dilation.

- δ increasing $=$ algebraic dilation iff $\exists \varepsilon$ such that (ε, δ) is an adjunction $\Rightarrow \varepsilon=$ algebraic erosion and $\varepsilon(x)=\bigvee\left\{y \in \mathcal{T}, \delta(y) \leq^{\prime} x\right\}$.
- $\varepsilon \delta \geq I d$ and $\delta \varepsilon \leq I d^{\prime}$.

■ $\varepsilon \delta \varepsilon=\varepsilon$ and $\delta \varepsilon \delta=\delta ; \varepsilon \delta \varepsilon \delta=\varepsilon \delta$ and $\delta \varepsilon \delta \varepsilon=\delta \varepsilon$.

- δ and ε increasing such that $\delta \varepsilon \leq I d^{\prime}$ and $\varepsilon \delta \geq I d \Rightarrow(\varepsilon, \delta)$ adjunction.
■ Algebraic opening: γ increasing, idempotent and anti-extensive.
■ Algebraic closing: φ increasing, idempotent and extensive.
■ Examples: $\gamma=\delta \varepsilon$ and $\varphi=\varepsilon \delta$ with (ε, δ) adjunction.

Lattice of fuzzy sets and fuzzy morphology

■ Space \mathcal{S} (e.g. \mathbb{Z}^{n} or \mathbb{R}^{n})
■ \mathcal{F} : set of fuzzy sets on $\mathcal{S}-\mu \in \mathcal{F}, \mu: \mathcal{S} \rightarrow[0,1]$.
■ Partial ordering: $\forall\left(\mu_{1}, \mu_{2}\right) \in \mathcal{F}^{2}, \mu_{1} \leq \mu_{2} \Leftrightarrow \forall x \in \mathcal{S}, \mu_{1}(x) \leq \mu_{2}(x)$

- $(\mathcal{F}, \leq)=$ complete lattice

■ $\wedge=\min$
■ $\vee=\max$

- Algebraic dilation and erosion: as in any complete lattice
\square Residuated lattice $(\mathcal{F}, \leq, t, I), t=\mathrm{t}$-norm (fuzzy conjunction), $I=$ fuzzy implication.
Fuzzy dilation and erosion of μ by ν :

$$
\delta_{\nu}(\mu)(x)=\sup _{y \in \mathcal{S}} t(\nu(x-y), \mu(y)) \quad \varepsilon_{\nu}(\mu)(x)=\inf _{y \in \mathcal{S}} I(\nu(y-x), \mu(y))
$$

Properties: as in classical morphology.

Structural information: spatial relations

Expression of several spatial relations in terms of morphological operators:

- adjacency
- distance (nearest point distance, Hausdorff distance)
- relative direction

■ more complex relations (between, along, parallel, crossing...)
Two classes of relations:

- well defined in the crisp case

■ vague even if objects are well defined

Example of directional relation

Filling the semantic gap: fuzzy representation of concepts in concrete domains.

Extends directly to fuzzy objects.
\Rightarrow use in spatial reasoning, for knowledge-based object segmentation and recognition.

Hypergraphs

■ Underlying space: $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ with \mathcal{V} the set of vertices and \mathcal{E} the set of hyperedges.

- Hypergraph: $H=(V, E)$ with $V \subseteq \mathcal{V}$ and $E \subseteq \mathcal{E}, E=\left(\left(e_{i}\right)_{i \in I}\right)$ $\left(e_{i} \subseteq V\right)$.
- $v(e)=$ set of vertices forming the hyperedge e (equivalence).
$■$ Isolated vertex: $x \in V \backslash \cup_{i \in I} V\left(e_{i}\right)=V_{\backslash E}$.
■ Dual hypergraph: $H^{*}=\left(V^{*} \simeq E, E^{*} \simeq(H(x))_{x \in V}\right)$ with $H(x)=\operatorname{star}(x)=\{e \mid x \in e\}$.
Joint work with Alain Bretto (CVIU 2013, DAM 2015, DGCI 2019)

Partial ordering and complete lattices

- On vertices: $\mathcal{T}_{1}=(\mathcal{P}(\mathcal{V}), \subseteq)$.

■ On hyperedges: $\mathcal{T}_{2}=(\mathcal{P}(\mathcal{E}), \subseteq)$.
■ On $\mathcal{H}: \mathcal{T}_{3}=(\{H\}, \preceq)$, with $\{H=(V, E)\}=$ set of hypergraphs defined on $(\mathcal{V}, \mathcal{E})$ such that $\forall e \in E, v(e) \subseteq V$.

- Partial ordering: $\forall\left(H_{1}=\left(V_{1}, E_{1}\right), H_{2}=\left(V_{2}, E_{2}\right)\right) \in \mathcal{T}_{3}^{2}$,

$$
H_{1} \preceq H_{2} \Leftrightarrow V_{1} \subseteq V_{2} \text { and } E_{1} \subseteq E_{2}
$$

- Inf and Sup:

$$
\begin{aligned}
& H_{1} \wedge H_{2}=\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right) \\
& H_{1} \vee H_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)
\end{aligned}
$$

and extensions to any family.
■ Smallest element: $H_{\emptyset}=(\emptyset, \emptyset)$, largest element: $\mathcal{H}=(\mathcal{V}, \mathcal{E})$.
Algebraic erosions and dilations as in any complete lattices. Structuring element: binary relation between two elements.

Example: $\delta:(\mathcal{P}(\mathcal{E}), \subseteq) \rightarrow(\mathcal{P}(\mathcal{V}), \subseteq)$
$\forall e \in E, B_{e}=\delta(\{e\})=\left\{x \in \mathcal{V} \mid \exists e^{\prime} \in \mathcal{E}, x \in e^{\prime}\right.$ and $\left.v(e) \cap v\left(e^{\prime}\right) \neq \emptyset\right\}$

$$
=\cup\left\{v\left(e^{\prime}\right) \mid v\left(e^{\prime}\right) \cap v(e) \neq \emptyset\right\}
$$

Morpho-Logics

Joint work with Jérôme Lang, IRIT (now at LAMSADE): mathematical morphology on logical formulas, via the models, in propositional logic [IPMU-2000, TCIS-2002, AI].

■ Set of all models of a formula $\varphi: \llbracket \varphi \rrbracket=\{\omega \in \Omega|\omega|=\varphi\}$
■ Lattice structure on the set of all models \Leftrightarrow lattice structure on the set of formulas (up to an equivalence relation).
■ $\llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$,
■ $\llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$,
$\llbracket \llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket$ iff $\varphi \models \psi$, and φ is consistent iff $\llbracket \varphi \rrbracket \neq \emptyset$

- Algebraic dilations and erosions as in any complete lattice.

Morphological dilation of a formula φ with a structuring element B :

$$
\llbracket \delta_{B}(\varphi) \rrbracket=\delta_{B}(\llbracket \varphi \rrbracket)=\left\{\omega \in \Omega \mid \check{B}_{\omega} \wedge \varphi \text { consistent }\right\} .
$$

Morphological erosion:

$$
\llbracket \varepsilon_{B}(\varphi) \rrbracket=\varepsilon_{B}(\llbracket \varphi \rrbracket)=\left\{\omega \in \Omega \mid B_{\omega} \models \varphi\right\} .
$$

B : a relation between worlds, e.g. neighborhood, distance.

Example of a dilation of size 1 (Hamming distance):
$\varphi=(a \wedge b \wedge c) \vee(\neg a \wedge \neg b \wedge c)$ and $\delta(\varphi)=(\neg a \vee b \vee c) \wedge(a \vee \neg b \vee c)$.

Reasoning with morpho-logics (in PL)

Joint work with Ramón Pino Pérez and Carlos Uzcátegui, Los Andes, Merida, Venezuela (now in Ecuador and Columbia) [ECSQARU-2001, KR-2004, ECAI-2006, AI].

- Revision.
- Merging (fusion).
- Abductive reasoning.
- Mediation.

Using dilations and erosions

Morphological partial ordering: stratification of the models from successive dilations and erosions.

Example: $x \preceq_{f} y \preceq_{f} z$

Abductive reasoning: example in image understanding

Pathological brain with a tumor

$$
\mathcal{K} \models(\gamma \rightarrow \mathcal{O})
$$

Compute the "best" explanation to the observations taking into account the expert knowledge (e.g. formalized in description logic).

Other logics

Modal logics [JANCL-2002]
Accessibility relation Structuring element

Description logics (joint work with Jamal Atif, LAMSADE, and Céline Hudelot, MICS) [FSS-2008, IEEE SMC-2014]: δ and ε as binary predicates, ontological reasoning.
Satisfaction systems and institutions (joint work with Marc Aiguier, MICS) [AI-2018, IJAR-2018, JANCL]:

- General framework for many logics.
- Revision based on relaxations.
- Abduction based on cuttings and retractions.

■ Dual operators from dilations and erosions.

- Towards spatial reasoning.

Spatial reasoning using modal morpho-logic

Examples in mereotopology (with $\square \equiv \varepsilon$ and $\diamond \equiv \delta$):
■ tangential part: $\varphi \rightarrow \psi$ and $\diamond \varphi \wedge \neg \psi$ consistent, or $\varphi \rightarrow \psi$ and $\varphi \wedge \neg \square \psi$ consistent

■ non tangential part: $\diamond \varphi \rightarrow \psi$, or $\varphi \rightarrow \square \psi$
■ external connection (adjacency):
$\varphi \wedge \psi$ inconsistent and $\diamond \varphi \wedge \psi$ consistent (or $\varphi \wedge \diamond \psi$ consistent)

Formal Concept Analysis (FCA) (Ganter et al. 1997)

- Set of objects G.
- Set of attributes M.
- Relation $I \subseteq G \times M:(g, m) \in I=$ object g has attribute m.

■ Formal context: $\mathbb{K}=(G, M, I)$.

- Derivation operators:

$$
\begin{aligned}
& \forall X \subseteq G, \alpha(X)=\{m \in M \mid \forall g \in X,(g, m) \in I\} \\
& \forall Y \subseteq M, \beta(Y)=\{g \in G \mid \forall m \in Y,(g, m) \in I\}
\end{aligned}
$$

\mathbb{K}	even	odd	prime	square
1		\times		\times
2	\times		\times	
3		\times	\times	

$$
\begin{aligned}
& \alpha(\{2,3\})=\{p\} \\
& \beta(\{o, p\})=\{3\}
\end{aligned}
$$

I as a structuring element

Galois connection

■ (α, β) is a Galois connection between the posets $(\mathcal{P}(G), \subseteq)$ and $(\mathcal{P}(M), \subseteq):$

$$
\forall X \in \mathcal{P}(G), \forall Y \in \mathcal{P}(M), Y \subseteq \alpha(X) \Leftrightarrow X \subseteq \beta(Y)
$$

- (X, Y) is a formal concept $\Leftrightarrow \alpha(X)=Y$ and $\beta(Y)=X$ Formal concept $a=(e(a), i(a))$, extent $e(a) \subseteq G$, intent $i(a) \subseteq M$. \Rightarrow complete lattice (\mathbb{C}, \preceq).
- Partial ordering: $\left(X_{1}, Y_{1}\right) \preceq\left(X_{2}, Y_{2}\right) \Leftrightarrow X_{1} \subseteq X_{2}\left(\Leftrightarrow Y_{2} \subseteq Y_{1}\right)$.

■ Smallest element: (\emptyset, M). Largest element: (G, \emptyset).

- Infimum and supremum:

$$
\begin{aligned}
& \bigwedge_{t \in T}\left(X_{t}, Y_{t}\right)=\left(\bigcap_{t \in T} X_{t}, \alpha\left(\beta\left(\bigcup_{t \in T} Y_{t}\right)\right)\right) \\
& \bigvee_{t \in T}\left(X_{t}, Y_{t}\right)=\left(\beta\left(\alpha\left(\bigcup_{t \in T} X_{t}\right)\right), \bigcap_{t \in T} Y_{t}\right)
\end{aligned}
$$

A simple example

\mathbb{K}	composite	even	odd	prime	square		
1			\times		\times		
2		\times		\times			
3			\times	\times			
4	\times	\times			\times		
5			\times	\times			
6	\times	\times					
7			\times	\times			
8	\times	\times					
9	\times		\times		\times		
10	\times	\times					$\mathbb{K}=(G=\{1,2 \ldots 10\}, M=\{c, e, o, p, s\}, I)$
:---							
composite $=$ integer >1 and non prime							

FCA: Adjunction and Galois connection

Equivalent concepts by reversing the order on one space. (CLA 2011)

$$
\begin{array}{cc}
\delta: A \rightarrow B, \varepsilon: B \rightarrow A & \alpha: B \rightarrow A, \beta: A \rightarrow B \\
\delta(a) \leq_{B} b \Leftrightarrow a \leq_{A} \varepsilon(b) & a \leq_{A} \alpha(b) \Leftrightarrow b \leq_{B} \beta(a) \\
\text { increasing operators } & \left(\Leftrightarrow \beta(a) \leq_{B}^{\prime} b \text { with } \leq_{B}^{\prime} \equiv \geq_{B}\right) \\
\varepsilon \delta \varepsilon=\varepsilon, \delta \varepsilon \delta=\delta & \text { decreasing operators } \\
\varepsilon \delta=\operatorname{closing}, \delta \varepsilon=\text { opening } & \alpha \beta \alpha=\alpha, \beta \alpha \beta=\beta \\
\operatorname{Inv}(\varepsilon \delta)=\varepsilon(B), \operatorname{Inv}(\delta \varepsilon)=\delta(A) & \alpha \beta \text { and } \beta \alpha=\text { lnv losings } \\
\varepsilon(B)=\text { Moore family } & \alpha(B) \text { and } \beta(B)=\operatorname{Inv}(\beta \alpha)=\beta(A)=\text { Moore families } \\
\delta(A)=\text { dual Moore family } & \\
\delta=\text { dilation: } \delta\left(\vee_{A} a_{i}\right)=\vee_{B}\left(\delta\left(a_{i}\right)\right) & \alpha\left(\vee_{B} b_{i}\right)=\wedge_{A} \alpha\left(b_{i}\right) \\
\varepsilon=\text { erosion: } \varepsilon\left(\wedge_{B} b_{i}\right)=\wedge_{A}\left(\varepsilon\left(b_{i}\right)\right) & \beta\left(\vee_{A} a_{i}\right)=\wedge_{B} \beta\left(a_{i}\right) \text { (anti-dilation) }
\end{array}
$$

($M \subseteq \mathcal{L}$ is a Moore family if any element of \mathcal{L} has a smallest upper bound in M)

Mathematical operators over concept lattices: two approaches

1 Based on the notion of structuring element, defined as a ball of radius 1 of some distance function on G derived from a distance on \mathbb{C}.
2 Directly from a distance on \mathbb{C}.

Joint work with Jamal Atif, Céline Hudelot, Felix Distel (ICFCA 2013, IJUFKS 2016).

Examples

$$
a=(\{1,9\},\{o, s\})
$$

$$
\begin{gathered}
a_{1}=(\{1,4,9\},\{s\}) \quad a_{2}=(\{1,3,5,7,9\},\{o\}) \quad a_{3}=(\{9\},\{c, o, s\}) \\
d \omega_{G}\left(a, a_{1}\right)=d \omega_{G}\left(a, a_{3}\right)=1 \Rightarrow \delta_{G}^{1}(\{a\})=\left\{a, a_{1}, a_{3}\right\}
\end{gathered}
$$

$$
d \omega_{M}\left(a, a_{1}\right)=d \omega_{M}\left(a, a_{2}\right)=d \omega_{M}\left(a, a_{3}\right)=1 \Rightarrow \delta_{M}^{1}(\{a\})=\left\{a, a_{1}, a_{2}, a_{3}\right\}
$$

Dilation of $\left\{a_{1}\right\}=\{(\{1,4,9\},\{s\})\}$ using as a structuring element a ball of $d_{\omega_{G}}$ for each irreducible element of its decomposition $(\{4\},\{c, e, s\}) \vee(\{1,9\},\{o, s\}) \vee(\{9\},\{c, o, s\})$:

$\neq \delta_{G}\left(\left\{a_{1}\right\}\right)!$

Links with other lattices (hypergraphs...) and extensions (fuzzy sets, rough sets, F-transforms...). (LFA 2015, IJUFKS 2016)

Lattices

$$
\begin{aligned}
& \left(\begin{array}{l}
\mathcal{P}(G), \subseteq) \\
(\mathcal{P}(M), \subseteq)
\end{array}\right. \\
& \begin{array}{l}
\left(L^{G}, \preceq_{F}, \wedge^{F}, \vee^{F}, *, \rightarrow\right) \\
\left(L^{M}, \preceq_{F}, \wedge^{F}, \vee^{F}, *, \rightarrow\right)
\end{array}
\end{aligned}
$$

Adjunctions

$$
\begin{gathered}
(\delta, \varepsilon) \longleftrightarrow \begin{array}{l}
\alpha=I^{\Delta}, \beta=I_{M}^{\Delta} \\
\begin{cases} & \\
\delta_{I}=I_{M}^{\Pi}=\bar{R}^{M}=f^{\downarrow}: & \mathcal{P}(M) \rightarrow \mathcal{P}(G) \\
\text { Structuring element } \\
\text { Relation in approxim }\end{cases} \\
\varepsilon_{I}=I^{N}=\underline{R}^{G}=F^{\downarrow}: \\
\left\{\begin{array}{l}
\mathcal{P}(G) \rightarrow \mathcal{P}(M) \\
\delta_{I}^{*}=I^{\Pi}=\bar{R}^{G}=F^{\uparrow}: \\
\varepsilon_{I}^{*}=I_{M}^{N}=\underline{R}^{M}=f^{\uparrow}: \\
\mathcal{P}(G) \rightarrow \mathcal{P}(M)
\end{array}\right.
\end{array} \begin{array}{l}
\mathcal{P}(M) \rightarrow \mathcal{P}(G)
\end{array}
\end{gathered}
$$

Valuations

$$
\left(\mathbb{C}^{F}, \preceq_{F C}, \wedge^{F C}, \vee^{F C}\right)
$$

A concept lattice for the diatonic scale

	Cm	Em				
$m i$	X	X				
sol	X	X				

[R. Wille \& R. Wille-Henning, «Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A different concept lattice for the diatonic scale

[R. Wille \& R. Wille-Henning, «Towards a Semantology of Music », ICCS 2007, Springer, 2007]

How to reduce the combinatorial explosion?

-T. Schlemmer, S. E. Schmidt, «A formal concept analysis of harmonic forms and interval structures», Annals of Mathematics and Artificial Intelligence 59(2), 241-256 (2010)

A lattice structure on intervals

Musical context $\mathbb{K}=\left(\mathcal{H}\left(\mathbb{T}_{n}\right), \mathbb{Z}_{n}, R\right)$:
■ $G=\mathcal{H}\left(\mathbb{Z}_{n}\right)=$ objects $=$ harmonic forms (equivalent classes up to a transposition),
■ $M=\mathbb{Z}_{n}=$ attributes $=$ intervals,
■ $R=$ occurrence of an interval in an harmonic form.
Example: 7 -tet $\mathbb{T}_{7}(\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{A}, \mathrm{B})$
Intervals $=$ unison (0), second (1), third (2), fourth (3).

Reducing a concept lattice using congruences

Joint work with Carlos Agon and Moreno Andreatta (ICSS 2018).
Congruence: equivalence relation θ on a lattice \mathcal{L}, compatible with join and meet, i.e. $(\theta(a, b)$ and $\theta(c, d)) \Rightarrow(\theta(a \vee c, b \vee d)$ and $\theta(a \wedge c, b \wedge d))$, for all $a, b, c, d \in \mathcal{L}$.
Quotient lattice: \mathcal{L} / θ
Example: congruence grouping the most common harmonic forms in a same equivalence class.
Harmonico-morphological descriptors:
■ Musical piece \mathcal{M}, harmonic system $\mathbb{T}_{\mathcal{M}}$, concept lattice $\mathbb{C}(\mathcal{M})$
■ $H_{\mathbb{C}}^{\mathcal{M}}$: formal concepts corresponding to the harmonic forms in \mathcal{M}

- θ grouping all formal concepts in $H_{\mathbb{C}}^{\mathcal{M}}$ into one same class;
- θ_{δ} grouping all formal concepts in $\delta\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ into one same class;
- θ_{ε} grouping all formal concepts in $\varepsilon\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ into one same class.

■ Proposed harmonic descriptors: quotient lattices $\mathbb{C}(\mathcal{M}) / \theta, \mathbb{C}(\mathcal{M}) / \theta_{\delta}$, and $\mathbb{C}(\mathcal{M}) / \theta_{\varepsilon}$.

Example: Ligeti's String Quartet No. 2 (M2 Pierre Mascarade)

Formal concepts associated with the harmonic forms found in $H^{\mathcal{M}}: H_{\mathbb{C}}^{\mathcal{M}}$ (red), dilation $\delta\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ (green), and erosion $\varepsilon\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$ (yellow).

Congruence relations θ, θ_{δ}, and θ_{ε} on $\mathbb{C}(\mathcal{M})$ (7-tet) generated by: $H_{\mathbb{C}}^{\mathcal{M}}, \delta\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$, and $\varepsilon\left(H_{\mathbb{C}}^{\mathcal{M}}\right)$.

Quotient lattices: $\mathbb{C}(\mathcal{M}) / \theta, \mathbb{C}(\mathcal{M}) / \theta_{\delta}$, and $\mathbb{C}(\mathcal{M}) / \theta_{\varepsilon}$.
Interpretation:
■ Dilations and erosions of the set of formal concepts provide upper and lower bounds of the description.
■ Congruences provide a structural summary of the harmonic forms.
■ Proposed descriptors $=$ good representative of \mathcal{M}, since they preserve the intervallic structures and provide compact summaries, which would allow for comparison between musical pieces.

Mathematical morphology on rhythms, melodies and spatial representations

- Object $=$ rhythm

■ Structuring element $=$ rhythm
■ Dilation via time translation

- Concatenation

Future work:

- Melodies.
- Spatial and discrete representations:
- piano roll
- Tonnetz
- simplicial simplex

■ Applications:

- analysis,
- generation,
- comparison...

Dilation

Extension to melodies

Conclusion

- Algebraic framework of mathematical morphology.
- Strong properties.
- Natural links with logics.

■ Applies in different frameworks (many types of logics, fuzzy sets, bipolarity, graphs and hypergraphs, formal concept analysis...).
■ Knowledge representation.

- Reasoning (on preferences, on beliefs, on spatial information...).

■ Spatial reasoning and image understanding.
■ Other applications (e.g. music).

