Mathematical Morphology on a Few Discrete Structures

Isabelle Bloch

LTCI, Télécom ParisTech

isabelle.bloch@telecom-paristech.fr

2019

Lattices and information processing

Lattices: core mathematical structure in many information processing problems.

Examples:

- soft computing (fuzzy sets, bipolar information),
- knowledge representation,
- logics,
- formal concept analysis,
- automated reasoning,
- decision making,
- image processing and understanding,
- information retrieval,
- etc.

Mathematical morphology on complete lattices.

Mathematical Morphology for Spatial Information

Matheron (mid-1960's), Serra (1982)

- A theory of space.
- Widely used in image processing and interpretation.
- At different levels (local, regional, structural...).
- For different tasks (filtering, enhancement, segmentation, interpretation, spatial knowledge modeling...).

Filtering

Segmentation and interpretation

Knowledge modeling What is the region to the right of R? Is B to the right of R (and to which degree)?

Spatial reasoning

I. Bloch (LTCI - Telecom ParisTech)

Mathematical Morphology

Formal framework: complete lattices

- Lattice: (\mathcal{T}, \leq) (\leq partial ordering) such that $\forall (x, y) \in \mathcal{T}, \exists x \lor y$ and $\exists x \land y$.
- Complete lattice: every family of elements (finite or not) has a smallest upper bound and a largest lower bound.
- Examples of complete lattices:
 - $(\mathcal{P}(E), \subseteq)$: complete lattice, Boolean (complemented and distributive)
 - functions of \mathbb{R}^n in $\overline{\mathbb{R}}$ for the partial ordering \leq :

$$f \leq g \Leftrightarrow \forall x \in \mathbb{R}^n, \ f(x) \leq g(x)$$

- partitions
- fuzzy sets, bipolar fuzzy sets
- rough sets and fuzzy rough sets
- graphs, hypergraphs
- logics (propositional logics, modal logics...)
- formal concepts

...

Mathematical morphology in a nutshell

Dilation: operation in complete lattices that commutes with the supremum.

Erosion: operation in complete lattices that commutes with the infimum.

 \Rightarrow applies in any mathematical framework endowed with a lattice structure.

Using a structuring element:

- dilation as a degree of conjunction: $\delta_B(X) = \{x \in S \mid B_x \cap X \neq \emptyset\},\$
- erosion as a degree of implication: $\varepsilon_B(X) = \{x \in S \mid B_x \subseteq X\}.$

Derived operators: opening, closing, conditional (geodesic) operations, gradient...

Relaxing the assumption on invariance under translation: structuring elements varying in space (ex: projective geometry, omnidirectional images...).

I. Bloch (LTCI - Telecom ParisTech)

Adjunctions

$$\begin{split} \delta : (\mathcal{T}, \leq) &\to (\mathcal{T}', \leq'), \ \varepsilon : (\mathcal{T}', \leq') \to (\mathcal{T}, \leq), \ (\varepsilon, \delta) \text{ adjunction if:} \\ \forall x \in \mathcal{T}, \forall y \in \mathcal{T}', \ \delta(x) \leq' y \Leftrightarrow x \leq \varepsilon(y) \end{split}$$

Properties:

•
$$\delta(0) = 0'$$
 and $\varepsilon(I') = I$.

- (ε, δ) adjunction $\Rightarrow \varepsilon =$ algebraic erosion and $\delta =$ algebraic dilation.
- δ increasing = algebraic dilation iff $\exists \varepsilon$ such that (ε, δ) is an adjunction $\Rightarrow \varepsilon =$ algebraic erosion and $\varepsilon(x) = \bigvee \{y \in \mathcal{T}, \delta(y) \leq x\}.$
- $\varepsilon \delta \ge Id$ and $\delta \varepsilon \le Id'$.
- $\varepsilon \delta \varepsilon = \varepsilon$ and $\delta \varepsilon \delta = \delta$; $\varepsilon \delta \varepsilon \delta = \varepsilon \delta$ and $\delta \varepsilon \delta \varepsilon = \delta \varepsilon$.
- δ and ε increasing such that $\delta \varepsilon \leq Id'$ and $\varepsilon \delta \geq Id \Rightarrow (\varepsilon, \delta)$ adjunction.
- Algebraic opening: γ increasing, idempotent and anti-extensive.
- Algebraic closing: φ increasing, idempotent and extensive.
- Examples: $\gamma = \delta \varepsilon$ and $\varphi = \varepsilon \delta$ with (ε, δ) adjunction.

Lattice of fuzzy sets and fuzzy morphology

- Space S (e.g. \mathbb{Z}^n or \mathbb{R}^n)
- \mathcal{F} : set of fuzzy sets on $\mathcal{S} \mu \in \mathcal{F}$, $\mu : \mathcal{S} \rightarrow [0, 1]$.
- Partial ordering: $\forall (\mu_1, \mu_2) \in \mathcal{F}^2, \mu_1 \leq \mu_2 \Leftrightarrow \forall x \in \mathcal{S}, \mu_1(x) \leq \mu_2(x)$
- $(\mathcal{F}, \leq) = \text{complete lattice}$
- \land = min
- \lor \lor = max
- Algebraic dilation and erosion: as in any complete lattice
- Residuated lattice (*F*, ≤, *t*, *l*), *t* = t-norm (fuzzy conjunction), *l* = fuzzy implication.

Fuzzy dilation and erosion of μ by ν :

$$\delta_{\nu}(\mu)(x) = \sup_{y \in \mathcal{S}} t(\nu(x-y), \mu(y)) \quad \varepsilon_{\nu}(\mu)(x) = \inf_{y \in \mathcal{S}} I(\nu(y-x), \mu(y))$$

Properties: as in classical morphology.

I. Bloch (LTCI - Telecom ParisTech)

Expression of several spatial relations in terms of morphological operators:

- adjacency
- distance (nearest point distance, Hausdorff distance)
- relative direction
- more complex relations (between, along, parallel, crossing...)

Two classes of relations:

- well defined in the crisp case
- vague even if objects are well defined

2019 11 / 43

Example of directional relation

Filling the semantic gap: fuzzy representation of concepts in concrete domains.

Extends directly to fuzzy objects.

⇒ use in spatial reasoning, for knowledge-based object segmentation and recognition.
I. Bloch (LTCI - Telecom ParisTech) Mathematical Morphology 2019 12 /

Hypergraphs

- Underlying space: H = (V, E) with V the set of vertices and E the set of hyperedges.
- Hypergraph: H = (V, E) with $V \subseteq V$ and $E \subseteq E$, $E = ((e_i)_{i \in I})$ $(e_i \subseteq V)$.
- v(e) = set of vertices forming the hyperedge e (equivalence).
- Isolated vertex: $x \in V \setminus \bigcup_{i \in I} v(e_i) = V_{\setminus E}$.
- Dual hypergraph: $H^* = (V^* \simeq E, E^* \simeq (H(x))_{x \in V})$ with $H(x) = \operatorname{star}(x) = \{e \mid x \in e\}.$

Joint work with Alain Bretto (CVIU 2013, DAM 2015, DGCI 2019)

Partial ordering and complete lattices

• On vertices:
$$\mathcal{T}_1 = (\mathcal{P}(\mathcal{V}), \subseteq).$$

• On hyperedges: $\mathcal{T}_2 = (\mathcal{P}(\mathcal{E}), \subseteq).$

• On \mathcal{H} : $\mathcal{T}_3 = (\{H\}, \preceq)$, with $\{H = (V, E)\}$ = set of hypergraphs defined on $(\mathcal{V}, \mathcal{E})$ such that $\forall e \in E, v(e) \subseteq V$.

• Partial ordering: $\forall (H_1 = (V_1, E_1), H_2 = (V_2, E_2)) \in \mathcal{T}_3^2$,

$$H_1 \preceq H_2 \Leftrightarrow V_1 \subseteq V_2$$
 and $E_1 \subseteq E_2$

Inf and Sup:

$$H_1 \wedge H_2 = (V_1 \cap V_2, E_1 \cap E_2)$$
$$H_1 \vee H_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

and extensions to any family.

Smallest element: $H_{\emptyset} = (\emptyset, \emptyset)$, largest element: $\mathcal{H} = (\mathcal{V}, \mathcal{E})$.

Algebraic erosions and dilations as in any complete lattices. Structuring element: binary relation between two elements.

I. Bloch (LTCI - Telecom ParisTech)

Mathematical Morphology

Example: $\delta : (\mathcal{P}(\mathcal{E}), \subseteq) \to (\mathcal{P}(\mathcal{V}), \subseteq)$

 $\forall e \in E, B_e = \delta(\{e\}) = \{x \in \mathcal{V} \mid \exists e' \in \mathcal{E}, x \in e' \text{ and } v(e) \cap v(e') \neq \emptyset\}$ $= \cup \{v(e') \mid v(e') \cap v(e) \neq \emptyset\}$

I. Bloch (LTCI - Telecom ParisTech)

Joint work with Jérôme Lang, IRIT (now at LAMSADE): mathematical morphology on logical formulas, via the models, in propositional logic [IPMU-2000, TCIS-2002, AI].

- Set of all models of a formula φ : $\llbracket \varphi \rrbracket = \{ \omega \in \Omega \mid \omega \models \varphi \}$
- Lattice structure on the set of all models ⇔ lattice structure on the set of formulas (up to an equivalence relation).

$$\blacksquare \ \llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket,$$

- $\blacksquare \ \llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket,$
- $\llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket$ iff $\varphi \models \psi$, and φ is consistent iff $\llbracket \varphi \rrbracket \neq \emptyset$
- Algebraic dilations and erosions as in any complete lattice.

Morphological dilation of a formula φ with a structuring element *B*:

$$\llbracket \delta_B(\varphi) \rrbracket = \delta_B(\llbracket \varphi \rrbracket) = \{ \omega \in \Omega \mid \check{B}_{\omega} \land \varphi \text{ consistent} \}.$$

Morphological erosion:

$$\llbracket \varepsilon_B(\varphi) \rrbracket = \varepsilon_B(\llbracket \varphi \rrbracket) = \{ \omega \in \Omega \mid B_\omega \models \varphi \}.$$

B: a relation between worlds, e.g. neighborhood, distance.

Example of a dilation of size 1 (Hamming distance): $\varphi = (a \land b \land c) \lor (\neg a \land \neg b \land c)$ and $\delta(\varphi) = (\neg a \lor b \lor c) \land (a \lor \neg b \lor c)$.

I. Bloch (LTCI - Telecom ParisTech)

2019 17 / 43

Joint work with Ramón Pino Pérez and Carlos Uzcátegui, Los Andes, Merida, Venezuela (now in Ecuador and Columbia) [ECSQARU-2001, KR-2004, ECAI-2006, AI].

- Revision.
- Merging (fusion).
- Abductive reasoning.
- Mediation.

Using dilations and erosions

Morphological partial ordering: stratification of the models from successive dilations and erosions.

Example: $x \preceq_f y \preceq_f z$

Abductive reasoning: example in image understanding

Pathological brain with a tumor

$$\mathcal{K} \models (\gamma \to \mathcal{O})$$

Compute the "best" explanation to the observations taking into account the expert knowledge (e.g. formalized in description logic).

Other logics

Description logics (joint work with Jamal Atif, LAMSADE, and Céline Hudelot, MICS) [FSS-2008, IEEE SMC-2014]: δ and ε as binary predicates, ontological reasoning.

Satisfaction systems and institutions (joint work with Marc Aiguier, MICS) [AI-2018, IJAR-2018, JANCL]:

- General framework for many logics.
- Revision based on relaxations.
- Abduction based on cuttings and retractions.
- Dual operators from dilations and erosions.
- Towards spatial reasoning.

Spatial reasoning using modal morpho-logic

Examples in mereotopology (with $\Box \equiv \varepsilon$ and $\diamond \equiv \delta$):

■ tangential part: $\varphi \rightarrow \psi$ and $\Diamond \varphi \land \neg \psi$ consistent, or $\varphi \rightarrow \psi$ and $\varphi \land \neg \Box \psi$ consistent

• non tangential part: $\Diamond \varphi \rightarrow \psi$, or $\varphi \rightarrow \Box \psi$

• external connection (adjacency): $\varphi \land \psi$ inconsistent and $\Diamond \varphi \land \psi$ consistent (or $\varphi \land \Diamond \psi$ consistent)

Formal Concept Analysis (FCA) (Ganter et al. 1997)

- Set of objects G.
- Set of attributes *M*.
- Relation $I \subseteq G \times M$: $(g, m) \in I$ = object g has attribute m.
- Formal context: $\mathbb{K} = (G, M, I)$.
- Derivation operators:

$$\forall X \subseteq G, \alpha(X) = \{ m \in M \mid \forall g \in X, (g, m) \in I \}$$
$$\forall Y \subseteq M, \beta(Y) = \{ g \in G \mid \forall m \in Y, (g, m) \in I \}$$

\mathbb{K}	even	odd	prime	square
1		×		Х
2	×		×	
3		×	×	

$\alpha(\{2,3\}) =$	{ p }
$\beta(\{o, p\}) =$	{3}

I as a structuring element

Galois connection

• (α, β) is a Galois connection between the posets $(\mathcal{P}(G), \subseteq)$ and $(\mathcal{P}(M), \subseteq)$:

 $\forall X \in \mathcal{P}(G), \forall Y \in \mathcal{P}(M), Y \subseteq \alpha(X) \Leftrightarrow X \subseteq \beta(Y)$

- (X, Y) is a formal concept $\Leftrightarrow \alpha(X) = Y$ and $\beta(Y) = X$ Formal concept a = (e(a), i(a)), extent $e(a) \subseteq G$, intent $i(a) \subseteq M$. \Rightarrow complete lattice (\mathbb{C}, \preceq) .
- Partial ordering: $(X_1, Y_1) \preceq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 (\Leftrightarrow Y_2 \subseteq Y_1).$
- Smallest element: (\emptyset, M) . Largest element: (G, \emptyset) .
- Infimum and supremum:

$$\bigwedge_{t\in T} (X_t, Y_t) = \left(\bigcap_{t\in T} X_t, \alpha \big(\beta \big(\bigcup_{t\in T} Y_t \big) \big) \right),$$
$$\bigvee_{t\in T} (X_t, Y_t) = \left(\beta \big(\alpha \big(\bigcup_{t\in T} X_t \big) \big), \bigcap_{t\in T} Y_t \right).$$

A simple example

K	composite	even	odd	prime	square
1			×		×
2		×		×	
3			×	×	
4	×	×			×
5			×	×	
6	×	×			
7			×	×	
8	×	×			
9	×		×		×
10	×	×			

 $\mathbb{K} = (G = \{1, 2...10\}, M = \{c, e, o, p, s\}, I)$

composite = integer > 1 and non prime

Equivalent concepts by reversing the order on one space. (CLA 2011)

 $\alpha: B \to A, \beta: A \to B$ $a \leq_A \alpha(b) \Leftrightarrow b \leq_B \beta(a)$ $(\Leftrightarrow \beta(a) \leq'_B b \text{ with } \leq'_B \equiv \geq_B)$

$$\delta: A \to B, \ \varepsilon: B \to A$$
$$\delta(a) \leq_B b \Leftrightarrow a \leq_A \varepsilon(b)$$

 $\begin{array}{ll} \text{increasing operators} \\ \varepsilon \delta \varepsilon = \varepsilon, \delta \varepsilon \delta = \delta \\ \varepsilon \delta = \text{closing, } \delta \varepsilon = \text{opening} \\ lnv(\varepsilon \delta) = \varepsilon(B), \ lnv(\delta \varepsilon) = \delta(A) \\ \varepsilon(B) = \text{Moore family} \\ \delta(A) = \text{dual Moore family} \\ \delta = \text{dilation: } \delta(\vee_A a_i) = \vee_B(\delta(a_i)) \\ \varepsilon = \text{erosion: } \varepsilon(\wedge_B b_i) = \wedge_A(\varepsilon(b_i)) \end{array} \qquad \begin{array}{ll} \text{decreasing operators} \\ \alpha \beta \alpha = \alpha, \beta \alpha \beta = \beta \\ \alpha \beta \text{ and } \beta \alpha = \text{closings} \\ \alpha \beta \text{ and } \beta \alpha = \text{closings} \\ lnv(\alpha \beta) = \alpha(B), \ lnv(\beta \alpha) = \beta(A) \\ \alpha(B) \text{ and } \beta(A) = \text{Moore families} \\ \alpha(B) \text{ and } \beta(A) = \text{Moore families} \\ \delta(A) = \text{dual Moore family} \\ \delta = \text{dilation: } \delta(\vee_A a_i) = \vee_B(\delta(a_i)) \\ \varepsilon = \text{erosion: } \varepsilon(\wedge_B b_i) = \wedge_A(\varepsilon(b_i)) \end{cases} \qquad \begin{array}{l} \beta(\vee_A a_i) = \wedge_B \beta(a_i) \text{ (anti-dilation)} \end{array}$

 $(M \subseteq \mathcal{L} \text{ is a Moore family if any element of } \mathcal{L} \text{ has a smallest upper bound in } M)$

$$arepsilon_I^*(\{p\})=\emptyset$$

Mathematical operators over concept lattices: two approaches

- **I** Based on the notion of structuring element, defined as a ball of radius 1 of some distance function on G derived from a distance on \mathbb{C} .
- **2** Directly from a distance on \mathbb{C} .

Joint work with Jamal Atif, Céline Hudelot, Felix Distel (ICFCA 2013, IJUFKS 2016).

Examples

$$a = (\{1,9\},\{o,s\})$$

$$a_1 = (\{1,4,9\},\{s\}) \qquad a_2 = (\{1,3,5,7,9\},\{o\}) \qquad a_3 = (\{9\},\{c,o,s\})$$

$$d\omega_G(a,a_1) = d\omega_G(a,a_3) = 1 \Rightarrow \delta^1_G(\{a\}) = \{a,a_1,a_3\}$$

 $d\omega_{M}(a,a_{1}) = d\omega_{M}(a,a_{2}) = d\omega_{M}(a,a_{3}) = 1 \Rightarrow \delta^{1}_{M}(\{a\}) = \{a,a_{1},a_{2},a_{3}\}$

Dilation of $\{a_1\} = \{(\{1, 4, 9\}, \{s\})\}$ using as a structuring element a ball of d_{ω_G} for each irreducible element of its decomposition $(\{4\}, \{c, e, s\}) \lor (\{1, 9\}, \{o, s\}) \lor (\{9\}, \{c, o, s\})$:

 $\neq \delta_{\mathcal{G}}(\{a_1\})$!

Links with other lattices (hypergraphs...) and extensions (fuzzy sets, rough sets, F-transforms...). (LFA 2015, IJUFKS 2016)

2019 31 / 43

A concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

A different concept lattice for the diatonic scale

[R. Wille & R. Wille-Henning, « Towards a Semantology of Music », ICCS 2007, Springer, 2007]

How to reduce the combinatorial explosion?

• T. Schlemmer, S. E. Schmidt, «A formal concept analysis of harmonic forms and interval structures », Annals of Mathematics and Artificial Intelligence 59(2), 241–256 (2010)

I. Bloch (LTCI - Telecom ParisTech)

Musical context $\mathbb{K} = (\mathcal{H}(\mathbb{T}_n), \mathbb{Z}_n, R)$:

- G = H(ℤ_n) = objects = harmonic forms (equivalent classes up to a transposition),
- $M = \mathbb{Z}_n$ = attributes = intervals,
- R =occurrence of an interval in an harmonic form.
- Example: 7-tet \mathbb{T}_7 (C, D, E, F, G, A, B) Intervals = unison (0), second (1), third (2), fourth (3).

Reducing a concept lattice using congruences

Joint work with Carlos Agon and Moreno Andreatta (ICSS 2018). **Congruence:** equivalence relation θ on a lattice \mathcal{L} , compatible with join and meet, i.e. $(\theta(a, b) \text{ and } \theta(c, d)) \Rightarrow (\theta(a \lor c, b \lor d) \text{ and } \theta(a \land c, b \land d))$, for all $a, b, c, d \in \mathcal{L}$. Quotient lattice: \mathcal{L}/θ

Example: congruence grouping the most common harmonic forms in a same equivalence class.

Harmonico-morphological descriptors:

- Musical piece \mathcal{M} , harmonic system $\mathbb{T}_{\mathcal{M}}$, concept lattice $\mathbb{C}(\mathcal{M})$
- $H_{\mathbb{C}}^{\mathcal{M}}$: formal concepts corresponding to the harmonic forms in \mathcal{M}
 - θ grouping all formal concepts in $H_{\mathbb{C}}^{\mathcal{M}}$ into one same class;
 - θ_{δ} grouping all formal concepts in $\delta(\mathcal{H}_{\mathbb{C}}^{\mathcal{M}})$ into one same class;
 - θ_{ε} grouping all formal concepts in $\varepsilon(H_{\mathbb{C}}^{\mathcal{M}})$ into one same class.
- Proposed harmonic descriptors: quotient lattices C(M)/θ, C(M)/θ_δ, and C(M)/θ_ε.

Example: Ligeti's String Quartet No. 2 (M2 Pierre Mascarade)

Formal concepts associated with the harmonic forms found in $H^{\mathcal{M}}$: $H^{\mathcal{M}}_{\mathbb{C}}$ (red), dilation $\delta(H^{\mathcal{M}}_{\mathbb{C}})$ (green), and erosion $\varepsilon(H^{\mathcal{M}}_{\mathbb{C}})$ (yellow).

I. Bloch (LTCI - Telecom ParisTech)

Mathematical Morphology

Congruence relations θ , θ_{δ} , and θ_{ε} on $\mathbb{C}(\mathcal{M})$ (7-tet) generated by: $H^{\mathcal{M}}_{\mathbb{C}}$, $\delta(H^{\mathcal{M}}_{\mathbb{C}})$, and $\varepsilon(H^{\mathcal{M}}_{\mathbb{C}})$.

Quotient lattices: $\mathbb{C}(\mathcal{M})/\theta$, $\mathbb{C}(\mathcal{M})/\theta_{\delta}$, and $\mathbb{C}(\mathcal{M})/\theta_{\varepsilon}$. Interpretation:

- Dilations and erosions of the set of formal concepts provide upper and lower bounds of the description.
- Congruences provide a structural summary of the harmonic forms.
- Proposed descriptors = good representative of *M*, since they preserve the intervallic structures and provide compact summaries, which would allow for comparison between musical pieces.

Mathematical morphology on rhythms, melodies and spatial representations

- Object = rhythm
- Structuring element = rhythm
- Dilation via time translation
- Concatenation
- Future work:
 - Melodies.
 - Spatial and discrete representations:
 - piano roll
 - Tonnetz
 - simplicial simplex
 - Applications:
 - analysis,
 - generation,
 - comparison...

Dilation

Extension to melodies

- Algebraic framework of mathematical morphology.
- Strong properties.
- Natural links with logics.
- Applies in different frameworks (many types of logics, fuzzy sets, bipolarity, graphs and hypergraphs, formal concept analysis...).
- Knowledge representation.
- Reasoning (on preferences, on beliefs, on spatial information...).
- Spatial reasoning and image understanding.
- Other applications (e.g. music).