PRESENTATION/RECALL OF SEVERAL 3D THINNING SCHEMES BASED ON BERTRAND'S PSIMPLE POINTS AND CRITICAL KERNELS NOTIONS

Christophe LOHOU

https://christophelohou.wordpress.com/activites-de-recherche/

Institut Pascal – Clermont-Ferrand

25 mars 2019 – ESIEE Paris

Workshop on Digital Topology and Mathematical Morphology on the occasion of the retirement of Gilles Bertrand

THINNING PROCESS

Definition

- Thinning/skeletonization algorithm : process which deletes points from an image while preserving its topology
 - Topological constraints: deletable points
 - Geometrical constraints: end points

Q1: Which topology framework should be used ? Q2: How to characterize deletable/end points ? Q3: How to design a thinning algorithm ?

DIGITAL TOPOLOGY FRAMEWORK

C. R. Acad. Sci. Paris, t. 321, Série I, p. 1077-1084, 1995

Informatique théorique/Computer Science (Théorie des signaux/Theory of Signals)

On *P*-simple points

Gilles BERTRAND

SIMPLE POINT

Definition

[Morgenthaler 1981, Kong 1989]

- Let $X \subseteq Z^3$ A point $x \in X$ is *simple* if its deletion does not « change the topology of the image», *i.e.*, if point x is deleted: - the components of X and \overline{X} are preserved
- the holes of X and X are preserved.

Global notion

Local characterization with topological numbers [Bertrand & Malandain, 1992, Malandain & Bertrand, 1994]

SEQUENTIAL ALGORITHM

<u>Repeat</u>

delete a simple point which is not an end point (video scan) until stability

Topology preservation proof

Bad SK-centering Bad efficiency

PROBLEM [PARALLEL DELETION]

Usually, all simple points cannot be simultaneously deleted!

SIMPLE SET

DEFINITION

Let $X \subseteq Z^3, S \subseteq X$ S is a simple set of X if points of S may be arranged according to a sequence $S = \{x_1, \dots, x_k\}$ such that x_1 is simple for X, and x_i is simple for the set $X \setminus \{x_1, \dots, x_{i-1}\}$ for $i = 2, \dots, k$

[Ma, 1994]

MINIMAL NON SIMPLE SET

Definition

[2D : Ronse 1986,1988; 3D : Hall 1992; Ma 1993,1994]

A *minimal non simple set* is a non simple set whose all subsets are simple sets.

THEOREM

[Ma, 1993]

Let *O* be a parallel thinning operator,

O well preserves topology if:

every set of black points,
included inside a unit square,
and that is deleted by O, must
be a simple set,

- *O* must not delete any connected component included inside a unit cube.

IN PRACTICAL

The only theorem used before *P*-simple points introduction (hard combinatory proofs)

SUBGRIDS THINNING ALGORITHMS

P-SIMPLE POINTS

PSIMPLE POINTS

DEFINITION (RECALL)

[Bertrand, 1995]

Let
$$X \subseteq Z^3$$
, $P \subseteq X$ and $x \in P$
 x is *P-simple* if $\forall S \subseteq P \setminus \{x\}, x$ is simple for $X \setminus S$

IN PRACTICAL

P={set of points which are candidate to be deleted by a parallel thinning algorithm}

PROPERTY

Any thinning algorithm that only deletes P-simple points in parallel (automatically) well preserves topology

STEP BACK:

Opposite approach of thinning algorithms design: no proof is required!

PARALLEL ALGORITHMS

AUTOMATIC CORRECTION

[Bertrand, 1995]

Let *O* be an operator; « correction » : $P = X \setminus O(X)$; $O'(X) = X \setminus \{P - \text{simples of } X\}$

Symmetrical algorithm

• Manzanera & al, 1999

A point x is deleted if it verifies α_1, α_2 , or α_3 , unless $\beta_1 \subseteq N_{18}(x)$ or $\beta_2 \subseteq N_{26}(x)$

SYMMETRICAL THINNING ALGORITHMS WITH *P*-SIMPLE POINTS

Repeat until stability

 $X \leftarrow X \setminus P$ —simple points for X

$$P_S = \{x \in X ; T_6(x, \overline{X}) \neq 0\}$$

$$P_{C} = \{x \in X ; T_{6}(x, \overline{X}) \\ = 1\} \bigcap \{x \in X ; \forall y \in N_{6}^{*}(x) \bigcap X, if T_{6}(y, \overline{X}) \}$$

[Lohou & Bertrand, 2007]

LB_C: LB_S: 64 - 1 200 196 38 - 1 153 383

Topology preservation proof SK-aspect

Bad efficiency Difficult implementation

QUESTION

Better separation deletable/end points ?

DIRECTIONAL ALGORITHMS

P^x-SIMPLE-POINTS AND DIRECTIONAL THINNING, MOST POWERFUL

Definition

[Lohou, 2001]

- Oalgorithm, P={points candidate to be deleted by O}
- Let $x \in X$, P^x : set of points which **may** verify the condition to membership to *P* by the only examination of $N(x) \cap X \longrightarrow P^x$ -simple point

PROPERTY

[Lohou, 2001]

Any P^x -simple point is a P-simple point. Any operator which deletes P^x -simple points well preserves topology

More **powerful** algorithm O' from an actual algorithm O (templates in N(x)):

O' deletes at least all points deleted by a O (for a same object); O preserving topo.

Topology preservation proof Efficiency of code

Implementation of « initial » code (iterations to design the algorithm)

Transition to Partll

PartII – Cubical complexes

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 363-367

Combinatorics

On critical kernels

Gilles Bertrand

2D

Cubical complexes

d-face

Regular/critical face

Definition

- We say that f is regular if $f \in Ess(X)$ and if \hat{f} collapses onto Core(f, X).
- We say that f is critical if $f \in Ess(X)$ and if f is not regular.

The 2-face is critical

The 3-face is regular

Definition

A face f in X is a maximal critical face, or an M-critical face, if f is a critical face which is not strictly included in any other critical face.

Generic thinning scheme

Definition

- Let S be a set of *n*-xels and let $K \subseteq S$.
- We denote by Cruc(5, K) the set composed of all n-xels which are in the crucial kernel of S or which are in K.
- Let $\langle S_0, S_1, ..., S_k \rangle$ be the unique sequence such that $S_0 = S$, $S_i = Cruc(S_{i-1}, K)$, i = 1, ..., k and $S_k = Cruc(S_k, K)$.
- The set S_k is the \mathcal{K} -skeleton of S constrained by K.

... local characterization with templates for cliques

Results

A New 3D Parallel Thinning Scheme Based on Critical Kernels

Gilles Bertrand and Michel Couprie

2014

Skeletons are invariant by 90° rotations

... local conditions (masks)

Isthmus based parallel and symmetric 3D thinning algorithms 2015

Gilles Bertrand*, Michel Couprie

Fig. 16. Illustration of algorithm IsthmusSymThinning, with k = 2.

Sequential algorithms: John Chaussard's PhD thesis, 2010 ; Couprie & Bertrand, 2015

CONCLUSION

- Digital topology ...
- Critical kernels:
 - Fancy way to define/characterize
 - deletable faces ... voxels
 - end points (isthmuses)
 - algorithms
 - Algorithms:
 - automatically well preserve topology (no proof)
 - easier implementation
 - Skeletons have better properties (separation between deletable and end points)

THANK YOU FOR YOUR ATTENTION