PRESENTATION/RECALL OF SEVERAL 3D

 Thinning Schemes based on Bertrand's PSIMPLE POINTS AND CRITICAL KERNELS NOTIONS

Christophe LOHOU

UNIVERSITÉ Clermont Auvergne
https://christophelohou.wordpress.com/activites-de-recherche/ Institut Pascal - Clermont-Ferrand 25 mars 2019 - ESIEE Paris
Workshop on Digital Topology and Mathematical Morphology on the occasion of the retirement of Gilles Bertrand

THINNING PROCESS

DEFINITION

- Thinning/skeletonization algorithm : process which deletes points from an image while preserving its topology
- Topological constraints: deletable points
- Geometrical constraints: end points

Q1: Which topology framework should be used ?
Q2: How to characterize deletable/end points ? Q3: How to design a thinning algorithm ?

Initial object

(ultimate) skeleton

Curve skeleton

Surface skeleton

DIGITAL TOPOLOGY FRAMEWORK

$X \quad X \subseteq Z^{3}$

Informatique théorique/Computer Science
(Théorie des signaux/Theory of Signals)

On P-simple points
Gilles Bertrand

SIMPLE POINT

DEFINITION

[Morgenthaler 1981, Kong 1989]

- Let $X \subseteq Z^{3}$

A point $x \in X$ is simple if its deletion does not « change the topology of the image»,
i.e., if point X is deleted:

- the components of \underline{X} and \bar{X} are preserved
- the holes of X and X are preserved.

Global notion

Local characterization with topological numbers [Bertrand \& Malandain, 1992, Malandain \& Bertrand, 1994]

SEQUENTIAL ALGORITHM

Repeat

delete a simple point which is not an end point (video scan)

until stability

- Topology preservation proof \square Bad SK-centering Bad efficiency

PROBLEM [PARALLEL DELETION]

Usually, all simple points cannot be simultaneously deleted!

SIMPLE SET

DEFINITION

Let $X \subseteq Z^{3}, S \subseteq X$
S is a simple set of X if points of S may be arranged according to a sequence $S=\left\{x_{1}, \ldots, x_{k}\right\}$
such that x_{1} is simple for X,
and x_{i} is simple for the set $X \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}$ for $i=2, \ldots, k$

MINIMAL NON SIMPLE SET

DEFINITION

[2D : Ronse 1986,1988; 3D : Hall 1992; Ma 1993,1994]
A minimal non simple set is a non simple set whose all subsets are simple sets.

THEOREM

[Ma, 1993]
Let O be a parallel thinning operator,
O well preserves topology if:

- every set of black points, included inside a unit square, and that is deleted by 0 , must be a simple set,
- O must not delete any connected component included inside a unit cube.

IN PRACTICAL

The only theorem used before P-simple points introduction (hard combinatory proofs)

SUBGRIDS THINNING ALGORITHMS

Repeat

For each i th subgrid delete in parallel simple points of the i th subgrid, which are not end points

Until stability

P-SIMPLE POINTS

[Bertrand, 1995]
Let $X \subseteq Z^{3}, P \subseteq X$ and $x \in P$
x is P-simple if $\forall S \subseteq P \backslash\{x\}, x$ is simple for $X \backslash S$

- $X \backslash P$
$\star P$
○ \bar{X}

x simple point x non P-simple point

PROPERTY

$X \backslash S$
[Bertrand, 1995]
local characterization of P-simple point \mathcal{X} once P is known in $N(x)$

P-SIMPLE POINTS

DEFINITION (RECALL)

Let $X \subseteq Z^{3}, P \subseteq X$ and $x \in P$
x is P-simple if $\forall S \subseteq P \backslash\{x\}, x$ is simple for $X \backslash S$

IN PRACTICAL
$P=\{$ set of points which are candidate to be deleted by a parallel thinning algorithm\}

PROPERTY

Any thinning algorithm that only deletes P-simple points in parallel (automatically) well preserves topology

STEP BACK:

Opposite approach of thinning algorithms design: no proof is required!

PARALLEL ALGORITHMS

Repeat

delete in parallel simple points not end points which verify deleting templates Until stability

Fully parallel:

- Ma, 1995
Ma \& Sonka, 1996

Symmetrical:

- Manzanera et al, 1999

SOUNDNESS OF THINNING

ALGORITHMS WITH P-SIMPLE POINTS

 ProcessO : parallel thinning algorithm, $P=\{$ points deleted by O during one iteration $\}$

$$
\forall X \subseteq Z^{3}, \forall x \in P, x \text { is } P \text {-simple ? }
$$

[Ma, 1995]

Not obtained by a computer !
[Lohou 2001, 2008, 2010]
[Ma and Sonka, 1996]

AUTOMATIC CORRECTION

Process

[Bertrand, 1995]

Let O be an operator; « correction »: $P=X \backslash O(X) ; O^{\prime}(X)=X \backslash\{P$-simple of $X\}$

M.\&S.' algo
L.\&D.'

Correct.
[Lohou \& Dehos, 2010]

Topology preservation proof

Bad efficiency

SYMMETRICAL ALGORITHM

- Manzanera \& al, 1999

A point x is deleted if it verifies α_{1}, α_{2}, or α_{3}, unless $\beta_{1} \subseteq N_{18}(x)$ or $\beta_{2} \subseteq N_{26}(x)$

Topology preservation proof

Bad SK-aspect

QUESTION

Original

MB-3D

Better control the skeleton thinness and aspect?

SYMMETRICAL THINNING

ALGORITHMS WITH PSIMPLE POINTS

Repeat until stability

$$
X \leftarrow X \backslash P \text {-simple points for } X
$$

$$
P_{S}=\left\{x \in X ; T_{6}(x, \bar{X}) \neq 0\right\}
$$

$P_{C}=\left\{x \in X ; T_{6}(x, \bar{X})\right.$
$=1\} \bigcap\left\{x \in X ; \forall y \in N_{6}^{*}(x) \bigcap X\right.$, if $T_{6}(y, \bar{X})$

Topology preservation proof SK-aspect

Bad efficiency
Difficult implementation

QUESTION

Better separation deletable/end points ?

DIRECTIONAL ALGORITHMS

Repeat until stability

For each direction dir in ($\mathrm{U}, \mathrm{N}, \mathrm{E}, \mathrm{B}, \mathrm{S}, \mathrm{W}$) delete in parallel simple points
non end points, verifying at least 1 deleting template for dir direction

 THINNING, MOST POWERFUL

DEFINITION
[Lohou, 2001]

- O algorithm, $P=\{$ points candidate to be deleted by $O\}$
- Let $x \in X, P^{x}$: set of points which may verify the condition to membership to P by the only examination of $N(x) \cap X$ P^{X}-simple point

PROPERTY

[Lohou, 2001]
Any P-simple point is a P-simple point. Any operator which deletes P^{x}-simple points well preserves topology

More powerful algorithm O^{\prime} from an actual algorithm O (templates in $\left.N(x)\right)$:
O^{\prime} deletes at least all points deleted by a O (for a same object); O preserving topo.
Topology preservation proof Efficiency of code

Implementation of «initial » code (iterations to design the algorithm)

Transition to PartII

PartII - Cubical complexes

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 363-367

Combinatorics
On critical kernels
Gilles Bertrand

2D
2D

Cubical complexes

$$
d \text {-face }
$$

- A subset of \mathbb{Z}^{n} composed of one point is called a 0-face.

■ A subset of \mathbb{Z}^{n} forming a unit bipoint is called a 1 -face.

- A subset of \mathbb{Z}^{n} forming a unit square is called a 2-face.
- A subset of \mathbb{Z}^{n} forming a unit cube is called a 3-face.

0 -face

1 -faces

2-face

3-face

Regular/critical face

Definition

- We say that f is regular if $f \in \operatorname{Ess}(X)$ and if \hat{f} collapses onto $\operatorname{Core}(f, X)$.
- We say that f is critical if $f \in \operatorname{Ess}(X)$ and if f is not regular.

The 2-face is critical

The 3-face is regular

Definition

- A face f in X is a maximal critical face, or an M-critical face, if f is a critical face which is not strictly included in any other critical face.

Generic thinning scheme

Definition

- Let S be a set of n-xels and let $K \subseteq S$.
- We denote by $\operatorname{Cruc}(S, K)$ the set composed of all n-xels which are in the crucial kernel of S or which are in K.
- Let $\left\langle S_{0}, S_{1}, \ldots, S_{k}\right\rangle$ be the unique sequence such that $S_{0}=S, S_{i}=\operatorname{Cruc}\left(S_{i-1}, K\right), i=1, \ldots, k$ and $S_{k}=\operatorname{Cruc}\left(S_{k}, K\right)$.
- The set S_{k} is the \mathcal{K}-skeleton of S constrained by K.
... local characterization with templates for cliques

Results

A New 3D Parallel Thinning Scheme Based on Critical Kernels

First fully // algo for minimal skeletons

Skeletons are invariant by 90° rotations

Isthmus based parallel and symmetric 3D thinning algorithms

Gilles Bertrand*, Michel Couprie

Fig. 15. Illustrations of algorithm IsthmusSymThinning, with $k=1$.

Fig. 16. Illustration of algorithm IsthmusSymThinning, with $k=2$.
Sequential algorithms: John Chaussard's
PhD thesis, 2010 ;
Couprie \& Bertrand, 2015

CONCLUSION

- Digital topology ...
- Critical kernels:
- Fancy way to define/characterize
- deletable faces ... voxels
- end points (isthmuses)
- algorithms
- Algorithms:
- automatically well preserve topology (no proof)
- easier implementation
- Skeletons have better properties (separation between deletable and end points)

THANK YOU FOR YOUR ATTENTION

