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THINNING PROCESS

4 2
* Thinning/skeletonization algorithm : process which deletes
points from an image while preserving its topology
" Topological constraints: deletable points
N = Geometrical constraints: end points y

Q1: Which topology framework should be used ?
Q2: How to characterize deletable/end points ?
Q3: How to design a thinning algorithm ?

Initial (ultimate) Curve Surface
object skeleton skeleton skeleton
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DIGITAL TOPOLOGY
FRAMEWORK

C. R. Acad. Sci. Paris, t. 321, Série 1, p. 1077-1084, 1995

Informatique théorique/Computer Science
(Théorie des signaux/Theory of Signals)

On P-simple points

Gilles BERTRAND




SIMPLE POINT

vz

[Morgenthaler 1981, Kong 1989] h

clet X = Z°

A point X € X is simple if
its deletion does not « change the topology of the image»,
i.e., if point Xis deleted: .
- the components of X and X are preserved
- the holes of X and Xare preserved.

Non-simple ) O O O O O O
points ST AT A T T AT K
J \J ) \/ \
k l) £\ r) I) r)
AT AR LI T T )
() ) 'e
Wod 1 ol 1 o4 1 ol ] ol 1 od
S|m |e ) () r) I) r) r) r)
pOil’Fl)tS ? et \/./ «‘ / '/ )fr /
( =) o O O C
3\ ) 7~ ) ) 'a
7"/J ././J ./J ./J\/,f)

Global
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Local characterization

with topological numbers
[Bertrand & Malandain, 1992,
Malandain & Bertrand, 1994]
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SEQUENTIAL ALGORITHM

Repeat
delete a simple point ) m/O ,\/O m/O /)/O
which is not an end point 5 ) ) )
(video scan) ) O/ O/\ O/\ O/\
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PROBLEM [PARALLEL DELETION]

( Usually, \

all simple points
cannot be
simultaneously

\ deleted! /

6/26



SIMPLE SET

/

let X =Z°,Sc X

Sis asimple set of X if points of S may be arranged
according to a sequence S =1{X,,..., X,

[Ma, 1994] )

such that X, issimple for X,
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MINIMAL NON SIMPLE SET

™
[2D : Ronse 1986,1988; 3D : Hall 1992; Ma 1993,1994]

_ simple sets.

A minimal non simple set is a non simple set whose all subsets are

THEOREM [Ma, 1993]

Let O be a parallel thinning
operator,
O well preserves topology if:

- every set of black points, Y v 2 va

included inside a unit square,
and that is deleted by O, must

be a simple set,

- O must not delete any
connected component

included inside a unit cube.
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IN PRACTICAL

The only theorem used before
P-simple points introduction 8/26
. (hard combinatory proofs)




SUBGRIDS THINNING ALGORITHMS

Repeat
For each /th subgrid ° ° o P ®
delete in parallel simple points ./ o ./’ ol |
of the /th subgrid, _/ / / / /
: : @ ® @ @ @
which are not end points . » -0 o o
Until stability @ @ { X @ ()
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J sology p . 9/26



FPSIMPLE POINTS
[Bertrand, 1995]"

let XcZ? PcXand XeP
X is P-simpleif VS P\{X}, X is simple for X \'S |

-

o =
) 2§| _* ) ) O O
x E o/(/( e -:" A c/(/( y o/r)f
O X /Q /o /0 /() /0 /o

o [ ( ()

of}_ F— s F—

X simple point
X non P-simple point X\S

PROPERTY [Bertrand, 1995]
local characterization of P -simple point X

once P is known in N(x)
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FSIMPLE POINTS

/

let X cZ°® Pc Xand xeP
X is P-simpleif VS C P\{X}, X is simple for X \' S

(G _

[Bertrand, 1995] )

IN PRACTICAL

P={set of points which are candidate to be deleted by a parallel
thinning algorithm}

PROPERTY

Any thinning algorithm that only deletes P-simple points in parallel
(automatically) well preserves topology

a
STEP BACK:
Opposite approach of thinning algorithms design: no proof is required!
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PARALLEL ALGORITHMS

) ° ® ° °
Repeat | | | —9 7 —9 —e
delete in parallel simple points not end % ./’ % ./’ ./"
points which verify deleting templates || Y P L e L e L o 1 e
ntil stability /( ST TS T T Y
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Deleting templates (up to isometries)

(symmetrical templates?)

&

Fully parallel: Symmetrical:
- Ma, 1995 - Manzanera et al, 1999

- Ma & Sonka, 1996
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SOUNDNESS OF THINNING
ALGORITHMS WITH P-SIMPLE POINTS

[ R

O parallel thinning algorithm, P ={points deleted by O during one iteration}
VX cZ° VxeP,Xis P-simple ?

[Ma, 1995] ) rf) O [Ma and Sonka, 1996]
A o
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Not obtained by a = /.

computer !
[Lohou 2001, 2008, 2010] 13/26
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AUTOMATIC CORRECTION
[ )

" Let O be an operator; « correction » :

P=X\O(X) ; O'(X)=X\{P-simples of X}

M.&S/
algo

L.&D.

Correc.
[Lohou & Dehos,
2010]

® ¢ Topology preservation proof . Bad efficiency
&L 14/26



SYMMETRICAL ALGORITHM

* Manzanera & al, 1999
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A point x is deleted if it verifies @y, a@,, or a3 , unless f; € N;g(x) or B, S N,(x)

!

% ’y

&) Topology preservation proof . Bad SK-aspect

Better control the skeleton thinness and aspect?
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SYMMETRICAL THINNING

ALGORITHMS WITH RSIMPLE POINTS

Repeat until stability [Lohou & Bertrand, 2007]
X « X \P —simple points for X

Ps ={xeX; Te(x, X) # 0}

Pr={xeX; T6(x,)?)
=1} ﬂ{xeX; VyeNg‘(x)ﬂX,if Te(y, X)

LB_C: LB_S:
64 - 1200 196 38-1153383

"o Topology preservation proof . Bad efficiency
= SK-aspect Difficult implementation

Better separation deletable/end points ?
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DIRECTIONAL ALGORITHMS

) /O /C /O /O

Repeat until stability ) ﬁ/O ® o ,_)/0

For each direction dir in (U,N,E,B,S,W) / LY | LY LT Il LD r )

. . o \/J /~>_ J /\J l /.)

delete in parallel simple points \/c ® ® C F.

non end points, verifying at least 1 o C ( o4 J

deleting template for dir direction /O— A ) r ) ./O ./0

U AT T T
N templates \/C/Q *Q)J o o '70

W / > E CJ ( rJ

for each subiteration
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P-SIMPLE-POINTS AND DIRECTIONAL

THINNING, MOST POWERFE UL.

4 [Lohou, 2001] )
« QOalgorithm, P={points candidate to be deleted by O}

* Let X e X, P*: set of points which may verify the
condition to membership to P by the only examination of

N(x)N\ X - PX_simple point

PROPERTY [Lohou, 2001]

Any PZsimple pointisa P -simple point. Any operator which
deletes P™simple points well preserves topology

More powerful algorithm O’ from an actual algorithm O (templates in N(x)):
mmmmdy- (O’ deletes at least all points deleted by a O (for a same object); O preserving topo.

X _ N
< Topology preservation proof  Efficiency of code

. Implementation of « initial » code (iterations to design the algorithm) 18/26



Transition to Partll




Partll — Cubical complexes

C. R. Acad. Sci. Paris, Ser. 1 345 (2007) 363-367

Combinatorics 2D

On critical kernels

Gilles Bertrand

binary image

pure 2D cubical complex
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Cubical complexes

d-face

m A subset of Z" composed of one point is called a
m A subset of Z" forming a unit bipoint is called a

m A subset of Z" forming a unit square is called a

m A subset of Z" forming a unit cube is called a

TR

O-face 1-faces 2-face
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Regular/critical face

Definition

m We say that f is if f € Ess(X) and if f collapses

onto Core(f, X).
m We say that f is if f € Ess(X) and if f is not

regular.

The 2-face is critical The 3-face is regular

—

Definition

m Aface fin X is a L or an

, if f is a critical face which is not strictly included in
any other critical face.




Generic thinning scheme

Definition
m Let S be a set of n-xels and let K C S.

m We denote by the set composed of all n-xels
which are in the crucial kernel of S or which are in K.

m Let (S0, 51, ..., Sk) be the unique sequence such that
50 — 5, 5,' — Cruc(S,-_l, K), | = 1, cony k and
Sk = Cruc(Sk, K).

m [heset S, is the

... local characterization with templates for cliques



A New 3D Parallel Thinning Scheme Based on

R esu I t S Critical Kernels

Gilles Bertrand and Michel Couprie

2014

First fully // algo

ith K = ()
P V for minimal skeletons

Skeletons are invariant
by 90° rotations

... local conditions (masks)
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Isthmus based parallel and symmetric 3D thinning algorithms 2015

Gilles Bertrand*, Michel Couprie

Algorithm 1: Cruciallsthmus(X, K, k).

Data: X e V3, K e V3, ke {1,2,2+)
Result: Y =D(X.K),Z=T(X.K. k)
1Y :=K; *
2 L=
3 ford — 3 downto 0 do
a | A:=setofallvoxels belonging to any d-clique that is
critical for X and jncluded inX \ Y;
5 B :=set of all voxels belonging to any d-clique that is
k-critical for X and included in X \ Y;
6 Y =Y UA;
7 Z=7ZUB;

Algorithm 2: [sthmusSymThinning(X, k).

Data: X ¢ V3, k ¢ {[1,2,2+)}

Result: X
1 K = ﬂ; Fig. 16. Illustration of algorithm IsthmusSymThinning, withk = 2.
2 repeat
3 | Y =DX.K); Sequential algorithms:
4 | Z=TX.K k) ,
s | X=v: John Chaussard’s
6 | K=KUZ; PhD thesis, 2010 ;
7 until stability; Couprie & Bertrand, 2015
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CONCLUSION

* Digital topology ...

e Critical kernels:

— Fancy way to define/characterize
 deletable faces ... voxels
* end points (isthmuses)
 algorithms

— Algorithmes:
e automatically well preserve topology (no proof)
e easier implementation

— Skeletons have better properties
(separation between deletable and end points)

THANK YOU FOR YOUR ATTENTION
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