
1 
 

Binary Images and Their Foreground Polyhedra 
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In 2D & 3D Cartesian Grids, Homology-Simple 1 = (8,4)-/(26,6)- Simple 1 
 

Seq-Homology-Simple & Hereditarily Homology-Simple Sets 
 

(4,8)-/(6,26)-Simple 1s and Homology-Cosimple Sets 
 

Pseudocode of a Typical Parallel Thinning Algorithm 
 

Bertrand's Critical Kernels and F-⋂s  
 

A Theorem of Bertrand & Couprie, and Minimal Non-Simple Sets 
 

Generalizing the Bertrand-Couprie Theorem 
 

Acyclic Polyhedra 
 

Cores of F-⋂s; Homology-Critical F-⋂s    
 

ℙ-Homology-Simple Elements 
 

Main Theorem 1: Characterization of ℙ-Homology-Simpleness 
 

Attachment Sets 
 



2 
 

Main Theorem 2: Characterization of Hereditary Homology-Simpleness 
 

Main Theorem 1  ⇒  Main Theorem 2  
 

Another Statement of Main Theorems 1 & 2 
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Restatement of Main Thms. 1 & 2 in Terms of Cliques When F is SN 
 

Proof of Main Thm. 1:  2 ⇒ 1 
 

Proof of Main Thm. 1:  1 ⇒ 2 
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Definition of  CoreF(C) 
Definition of  FC 
Definition of  hereditarily homology-simple 
Definition of  F-homology-critical  
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Definition of  homology-simple 
Definition of  F-⋂ (F-intersection)  

Definition of  seq-homology-simple 
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               What is This Talk About (1)? 
 

A convex polytope is a set that is the convex hull of  
a finite set of points in some Euclidean space Rn. 
 

A polyhedron is a set that is the union of a finite               A Convex Polytope                           
collection of convex polytopes in a Euclidean space.       
    • The union of any finite collection of polyhedra 
          is a polyhedron. 
    • The intersection of any finite collection of polyhedra  
          is a polyhedron. 
 

• This talk will present homology-critical kernels, which 
   are a variant of Bertrand's critical kernels: When dealing 
   with sets of grid cells of a 2D, 3D, or 4D Cartesian grid,  
   homology-critical and critical are equivalent.                   A 2D Polyhedron  



5 
 

               What is This Talk About (1)? 
 

A convex polytope is a set that is the convex hull of  
a finite set of points in some Euclidean space Rn. 
 

A polyhedron is a set that is the union of a finite               A Convex Polytope                           
collection of convex polytopes in a Euclidean space.       
    • The union of any finite collection of polyhedra 
          is a polyhedron. 
    • The intersection of any finite collection of polyhedra  
          is a polyhedron. 
 

• This talk will present homology-critical kernels, which 
   are a variant of Bertrand's critical kernels: When dealing 
   with sets of grid cells of a 2D, 3D, or 4D Cartesian grid,  
   homology-critical and critical are equivalent.                   A 2D Polyhedron  
 

• Many results about critical kernels of such sets become valid for sets    
   of arbitrary convex polytopes of any dimension (and, more generally,  
   sets of arbitrary acyclic polyhedra whose nonempty intersections are    
    acyclic) if they are restated as results about homology-critical kernels. 
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•  Below is an (extremely simple) 2D example of a set of polyhedra to  
   which the main results of this talk would apply. 
 

•  While these five 2D polyhedra have disjoint interiors, our main results  
   are also valid for collections of polyhedra whose interiors overlap. 
 
   
 
 
 

From:  
  G. T. Herman,  
  Geometry of Digital Spaces,  
  Birkhäuser, 1998. 
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                                       From Wikimedia Commons, the free media repository 
      File: Polygons bundle-01.svg   Date: Aug. 11, 2018   Author: Matt Grünewald 
                                                  https://creativecommons.org/licenses/by-sa/4.0/deed.en 
 
 

Another 2D example  
of a set of polyhedra to  
which the main results  
of this talk would apply: 
 
•  The polyhedra here are the 
   2D convex polytopes  
   bounded by the gray lines. 
 

• The green parts of this 
  drawing are irrelevant.  

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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                           What is This Talk About (2)? 
 

A thinning algorithm simplifies a binary image by reducing its 
foreground to a thin "skeleton" in a "topology-preserving" way. 
 

One formulation of the "topology-preserving" requirement is that 
the set of deleted image elements satisfy the condition of being  
homology-simple (a term we will define) in the image foreground F. 
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                           What is This Talk About (2)? 
 

A thinning algorithm simplifies a binary image by reducing its 
foreground to a thin "skeleton" in a "topology-preserving" way. 
 

One formulation of the "topology-preserving" requirement is that 
the set of deleted image elements satisfy the condition of being  
homology-simple (a term we will define) in the image foreground F. 
 

A methodology due to Bertrand and Couprie, based on critical kernels, 
designs parallel thinning algorithms that always satisfy this requirement. 
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                           What is This Talk About (2)? 
 

A thinning algorithm simplifies a binary image by reducing its 
foreground to a thin "skeleton" in a "topology-preserving" way. 
 

One formulation of the "topology-preserving" requirement is that 
the set of deleted image elements satisfy the condition of being  
homology-simple (a term we will define) in the image foreground F. 
 

A methodology due to Bertrand and Couprie, based on critical kernels, 
designs parallel thinning algorithms that always satisfy this requirement. 
 

For binary images on grid cells of a 2D, 3D, or 4D Cartesian grid, a 
fundamental theorem of Bertrand and Couprie relating to critical kernels 
provides a useful local necessary and sufficient condition for every subset 
of a given set of image elements to be homology-simple in F. 
 

• Our main result (Main Theorem 2) substitutes homology-critical for  
   critical in a statement of this theorem and so gives an analogous 
   necessary and sufficient condition that is valid for binary images on sets  
   of arbitrary convex polytopes of any dimension––even if some of the  
   polytopes have overlapping interiors––and, still more generally, sets of  
   arbitrary acyclic polyhedra whose nonempty intersections are acyclic. 
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           Binary Images and Their Foreground Polyhedra 
 

Let G be a set of polyhedra––e.g., G may be a set of grid cells of a nD  
Cartesian grid––and let I : G {0, 1} be such that I–1[{1}] is finite. Then: 
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           Binary Images and Their Foreground Polyhedra 
 

Let G be a set of polyhedra––e.g., G may be a set of grid cells of a nD  
Cartesian grid––and let I : G {0, 1} be such that I–1[{1}] is finite. Then: 
   • The function I will be called a binary image on G. 
   • If  P ∈ G  and I(P) = 1, then we say P is a  1  of  I.    
   • If  P ∈ G  and I(P) = 0, then we say P is a  0  of  I. 
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           Binary Images and Their Foreground Polyhedra 
 

Let G be a set of polyhedra––e.g., G may be a set of grid cells of a nD  
Cartesian grid––and let I : G {0, 1} be such that I–1[{1}] is finite. Then: 
   • The function I will be called a binary image on G. 
   • If  P ∈ G  and I(P) = 1, then we say P is a  1  of  I.    
   • If  P ∈ G  and I(P) = 0, then we say P is a  0  of  I. 
   • The foreground of I is the set I–1[{1}] –– i.e., the set of all 1s of I.  
      This set will be denoted by FI.  
   • The foreground polyhedron of I is the set ⋃FI = ⋃ I–1[{1}].  
 
0 0 0 0 0 0 0 0 0 0 0       
0 0 0 1 1 1 1 1 1 0 0                                         Left:   
0 1 1 1 0 0 0 1 1 0 0                                 A binary image I on a  
0 1 0 0 1 1 0 1 1 1 0                set of 88 grid cells of a  
0 1 0 0 0 1 0 1 0 1 0                     2D Cartesian grid. 
0 0 1 1 1 1 0 0 0 0 0               
0 0 1 1 1 0 0 0 0 0 0                                         Right:   
0 0 0 0 0 0 0 0 0 0 0                                           I's foreground polyhedron FI 
                   I            FI 
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                                           Thinning Algorithms 
 

A thinning algorithm is used to transform a binary image  
by reducing its foreground to a thin "skeleton". 
 

Let  Iin : G {0, 1}  and  Iout : G {0, 1}  be the 
input and output binary images of an nD thinning algorithm. 
 

Thinning algorithms change 1s to 0s but never change 0s to 1s, so the 
foreground of Iout is a subset of the foreground of Iin:      FIout  ⊆   FIin 

                                    
 

3 Examples of 3D Thinning (Using Different Thinning Algorithms) 
[From: C. M. Ma, S. Y. Wan, and J. D. Lee, IEEE Transactions on  
            Pattern Analysis and Machine Intelligence 24 (2002) 1594 –1605] 
 

           Iin
                       Iout

                         Iin
                      Iout

                        Iin
                   Iout
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Topological Requirements of Thinning: Homology-Simpleness 
 

We expect 2D thinning algorithms to preserve  
connected components and internal cavities of  FIin.  
We expect 3D thinning algorithms to preserve connected  
components, internal cavities, and holes/tunnels of  FIin.  
 

The following condition T states these requirements  
precisely, and also generalizes them to higher-dimensional thinning: 
 
   

T: The inclusion  ι : ⋃FIout  → ⋃FIin must be a homology isomorphism–– 
     ι must induce a group isomorphism ι*: Hk(⋃FIout) → Hk(⋃FIin) for all k.         
 
 
 

Let F be any set of polyhedra, let D ⊆ F and let Q ∈ F. Then we say  
D is homology-simple in F if the inclusion ⋃(F \ D) → ⋃F is a  
homology isomorphism. We say Q is homology-simple in F if {Q} is. 
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Topological Requirements of Thinning: Homology-Simpleness 
 

We expect 2D thinning algorithms to preserve  
connected components and internal cavities of  FIin.  
We expect 3D thinning algorithms to preserve connected  
components, internal cavities, and holes/tunnels of  FIin.  
 

The following condition T states these requirements  
precisely, and also generalizes them to higher-dimensional thinning: 
 
   

T: The inclusion  ι : ⋃FIout  → ⋃FIin must be a homology isomorphism–– 
     ι must induce a group isomorphism ι*: Hk(⋃FIout) → Hk(⋃FIin) for all k.         
 
 
 

Let F be any set of polyhedra, let D ⊆ F and let Q ∈ F. Then we say  
D is homology-simple in F if the inclusion ⋃(F \ D) → ⋃F is a  
homology isomorphism. We say Q is homology-simple in F if {Q} is. 
 

So the topological condition T can also be stated as follows: 
 

        T: The set  FIin \ FIout   must be homology-simple in FIin. 
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Homology-Simple Sets in the Plane 

 

If F is any finite set of polyhedra in the plane R2 and D ⊆ F, then D is  
homology-simple in F if and only if none of the following occurs when 
we remove D from F: 
 

1. A component of ⋃F is split.                                             = element of F                                                     
    [e.g., D ={E,F} is not homology-simple in F.]                                                                                                    
     
2. A component of ⋃F is eliminated.   
    [e.g., D ={G,H, I, J } is not homology-simple in F.] 
 

3. A component of ⋃F gains a new internal  
    cavity.  [e.g., D ={C} is not homology-simple in F.] 
 

4. A component of ⋃F loses an internal cavity when that internal  
    cavity is merged with another cavity or merged with the component's  
    outside. [e.g., {A} and {B, C, D} are not homology-simple in F.] 
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Homology-Simple Sets in Rn 
 

More generally, if F is a set of polyhedra in Rn and D ⊆ F, then  
D is homology-simple in F just if there is no k ≤ n such that removal of D 
from F splits or eliminates a class of homologous k-dimensional cycles.  
 

[Two k-cycles z and z' in a set X are said to be homologous (in X) just if 
there exists a (k+1)-chain c in X such that the boundary of c is z – z'.] 
 

D is homology-simple in F just if neither of the  
following is true: 
 

1. For some k ≤ n, ∃ non-homologous k-cycles  
    of ⋃(F \ D) that are homologous in ⋃F.        
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Homology-Simple Sets in Rn 
 

More generally, if F is a set of polyhedra in Rn and D ⊆ F, then  
D is homology-simple in F just if there is no k ≤ n such that removal of D 
from F splits or eliminates a class of homologous k-dimensional cycles.  
 

[Two k-cycles z and z' in a set X are said to be homologous (in X) just if 
there exists a (k+1)-chain c in X such that the boundary of c is z – z'.] 
 

D is homology-simple in F just if neither of the  
following is true: 
 

1. For some k ≤ n, ∃ non-homologous k-cycles  
    of ⋃(F \ D) that are homologous in ⋃F.       
 

2. For some k ≤ n, ∃ a k-cycle in ⋃F that is 
    not homologous to any k-cycle in ⋃(F \ D).  
 

 

The mapping of homology classes of k-cycles  
induced by the inclusion ι : ⋃(F \ D)  → ⋃F  
is not 1-1 in case 1, not onto in case 2.  
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Let F be any finite set of polyhedra, let D ⊆ F and let Q ∈ F. Then we 
say D is homology-simple in F if the inclusion ⋃(F \ D) → ⋃F is a  
homology isomorphism. We say Q is homology-simple in F if {Q} is. 
 
 

Recall 
 
 
 

Homology-Simpleness in 2D and 3D Cartesian Grids 
 

Most applications of binary images use binary images I : G {0, 1} for 
which G is a set of grid cells of a 2D or 3D Cartesian grid (so that I's 
foreground FI = I–1[{1}] is a set of grid cells of the same Cartesian grid). 
 

When F is a set of grid cells of a 2D or 3D Cartesian grid and Q ∈ F, it 
can be shown that the following are equivalent: 
     1. Q is homology-simple in F.  
     2. Q is a simple element of F in the "traditional" (8,4) or (26,6) sense. 
 

Regarding 2, various local characterizations of elements Q that are  
simple in traditional senses have been given by a number of authors 
––e.g., Rosenfeld (1970) in the 2D case, and Morgenthaler (1981),  
Tsao+Fu (1982), Saha et al. / Bertrand+Malandain (1991/2), Kong (1995), 
Bertrand (1996), and Bertrand+Couprie (2006) in the 3D case.  
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Let F be any finite set of polyhedra, let D ⊆ F and let Q ∈ F. Then we 
say D is homology-simple in F if the inclusion ⋃(F \ D) → ⋃F is a  
homology isomorphism. We say Q is homology-simple in F if {Q} is. 
 
 

Recall 
 
 
 

Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
 

We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k. 
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Let F be any finite set of polyhedra, let D ⊆ F and let Q ∈ F. Then we 
say D is homology-simple in F if the inclusion ⋃(F \ D) → ⋃F is a  
homology isomorphism. We say Q is homology-simple in F if {Q} is. 
 
 

Recall 
 

 
 

Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
 

We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k. 
 

   D is seq-homology-simple in F   ⇒   D is homology-simple in F. 
                       as homology isomorphisms are closed under composition. 
                                                                    
 
 
 
 
 
 
 
 
 
 

 
 



23 
 

Let F be any finite set of polyhedra, let D ⊆ F and let Q ∈ F. Then we 
say D is homology-simple in F if the inclusion ⋃(F \ D) → ⋃F is a  
homology isomorphism. We say Q is homology-simple in F if {Q} is. 
 
 

Recall 
 

 
 

Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
 

We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k. 
 

   D is seq-homology-simple in F   ⇒   D is homology-simple in F. 
                       as homology isomorphisms are closed under composition. 
 

But, even in R3, 
   D is homology-simple in F   ⇏  D is seq-homology-simple in F. 
                                                                    

  If | F | > 1 and ⋃F is acyclic but no element of F is homology-simple in F  (as 
  is possible even if F is a set of cubical voxels) then, for any acyclic Q ∈ F,                
   F \ {Q} is homology-simple but not seq-homology-simple in F. 
=============================== 
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Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k.    
   D is seq-homology-simple in F   ⇒   D is homology-simple in F. 
                       as homology isomorphisms are closed under composition. 
But, even in R3, 
   D is homology-simple in F   ⇏  D is seq-homology-simple in F. 
  If | F | > 1 and ⋃F is acyclic but no element of F is homology-simple in F  (as 
  is possible even if F is a set of cubical voxels) then, for any acyclic Q ∈ F,                
   F \ {Q} is homology-simple but not seq-homology-simple in F. 
=============================== 
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Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k.  
   D is seq-homology-simple in F   ⇒   D is homology-simple in F. 
                       as homology isomorphisms are closed under composition. 
But, even in R3, 
   D is homology-simple in F   ⇏  D is seq-homology-simple in F. 
  If | F | > 1 and ⋃F is acyclic but no element of F is homology-simple in F  (as 
  is possible even if F is a set of cubical voxels) then, for any acyclic Q ∈ F,                
   F \ {Q} is homology-simple but not seq-homology-simple in F. 
=============================== 

We say  D  is hereditarily homology-simple in F if  
  every subset of D is homology-simple in F. 
 

We say  D  is hereditarily seq-homology-simple in F if 
  every subset of D is seq-homology-simple in F. 
 

We will see that: 
======= 
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Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k.   
=============================== 

We say  D  is hereditarily homology-simple in F if  
  every subset of D is homology-simple in F. 
We say  D  is hereditarily seq-homology-simple in F if 
  every subset of D is seq-homology-simple in F. 
 

We will see that:     
=======      
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Seq-Homology-Simpleness & Hereditary Homology-Simpleness 
 

Let F be any finite set of polyhedra, and let D ⊆ F.  
We say D is sequentially-homology-simple or seq-homology-simple in F 
if there is an enumeration Q1, ..., Qk of the elements of D such that:  

       • Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k.   
=============================== 

We say  D  is hereditarily homology-simple in F if  
  every subset of D is homology-simple in F. 
We say  D  is hereditarily seq-homology-simple in F if 
  every subset of D is seq-homology-simple in F. 
 

We will see that: D is hereditarily homology-simple in F    
=======      ⇔  D is hereditarily seq-homology-simple in F 
        ⇔  for every enumeration Q1, ..., Qk of the elements of D  
                             Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k 
 

When F is a set of grid cells of a 2D or 3D Cartesian grid and Q ∈ F, since  

   Q is homology-simple in F ⇔ Q is simple in F in the "traditional" sense 
"D is hereditarily homology-simple in F" can be understood  purely in 
terms of simpleness in the traditional  (8,4) or (26,6) sense! 
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Digression: (4,8) or (6,26)-Simple 1s and Homology-Co simple Sets   

Let I : G {0, 1} be a binary image on a collection G of polyhedra,  
let  D ⊆ FI =  I–1[{1}]  and let  Q ∈ FI.  Thus  G \ FI = I–1[{0}]. 
 

Then we say D is homology-cosimple in FI  if  D is homology-simple in 
(G \ FI) ∪ D.  We say Q is homology-cosimple in FI if {Q} is.  
We say D  is hereditarily homology-cosimple in FI if every subset of D is. 
 

• When G is the set of all grid cells of a 2D or 3D Cartesian grid and Q ∈ FI,  
   it can be shown that the following are equivalent: 
       1. Q is homology-cosimple in FI.  
       2. Q is a simple element of FI in the traditional (4,8) or (6,26) sense. 
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Digression: (4,8) or (6,26)-Simple 1s and Homology-Co simple Sets 
 

Let I : G {0, 1} be a binary image on a collection G of polyhedra,  
let  D ⊆ FI =  I–1[{1}]  and let  Q ∈ FI.  Thus  G \ FI = I–1[{0}]. 
 

Then we say D is homology-cosimple in FI  if  D is homology-simple in 
(G \ FI) ∪ D.  We say Q is homology-cosimple in FI if {Q} is.  
We say D  is hereditarily homology-cosimple in FI if every subset of D is. 
 

• When G is the set of all grid cells of a 2D or 3D Cartesian grid and Q ∈ FI,  
   it can be shown that the following are equivalent: 
       1. Q is homology-cosimple in FI.  
       2. Q is a simple element of FI in the traditional (4,8) or (6,26) sense. 
 
 
 

• When G is a locally finite collection of convex polytopes (or, more     
   generally, acyclic polyhedra whose nonempty intersections are acyclic),  
   the local characterization (in terms of homology-critical kernels) of    
   hereditarily homology-simple sets D given by our Main Thm. 2 implies    
   a local characterization of hereditarily homology-cosimple sets D, since  
   it can be shown that:    D is hereditarily homology-cosimple in FI    
                                       ⇔  D is hereditarily homology-simple in (G \ FI) ∪ D 
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5.  Iout
  = I 

 

Thinning algorithms must satisfy the following topological requirement: 

          T: The set  FIin \  FIout   must be homology-simple in FIin. 

 

Recall  
                    
 

 

Pseudocode of a Typical Parallel Thinning Algorithm 
  1.  I = Iin 
    2.  while the termination condition is not satisfied do 

  3.   │D = a subset of FI that is hereditarily homology-simple in FI 
  4.   │ I = I – D 
          └ 
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5.  Iout
  = I 

 

Thinning algorithms must satisfy the following topological requirement: 

          T: The set  FIin \  FIout   must be homology-simple in FIin. 

 

Recall  
                    
 

 

Pseudocode of a Typical Parallel Thinning Algorithm 
  1.  I = Iin 
    2.  while the termination condition is not satisfied do 

  3.   │D = a subset of FI that is hereditarily homology-simple in FI 
  4.   │ I = I – D 
          └ 
 

•  In step 4,      I – D  ≝ the binary image on G whose set of 1s is  FI \  D. 
 

• T is satisfied, as  D   is homology-simple in FI at every loop iteration. 
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5.  Iout
  = I 

 

Thinning algorithms must satisfy the following topological requirement: 

          T: The set  FIin \  FIout   must be homology-simple in FIin. 

 

Recall  
                    
 

 

Pseudocode of a Typical Parallel Thinning Algorithm 
  1.  I = Iin 
    2.  while the termination condition is not satisfied do 

  3.   │D = a subset of FI that is hereditarily homology-simple in FI 
  4.   │ I = I – D 
          └ 
 

•  In step 4,      I – D  ≝ the binary image on G whose set of 1s is  FI \  D. 
 

• T is satisfied, as  D   is homology-simple in FI at every loop iteration. 
 

• The subsets D are chosen to satisfy some non-topological requirements: 
    -  The shape of  Iout's foreground should reflect that of  Iin's foreground. 

    -  Iout's foreground should be well centered relative to Iin's foreground. 

    -  Iout's foreground should be very thin. 
 

  Such requirements are very important, but are not the focus of this talk. 
=============================== 
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5.  Iout
  = I 

 

Pseudocode of a Typical Parallel Thinning Algorithm 
  1.  I = Iin 
    2.  while the termination condition is not satisfied do  

  3.   │D = a subset of FI that is hereditarily homology-simple in FI 
  4.   │ I = I – D 
          └ 
 

•  In step 4,      I – D  ≝ the binary image on G whose set of 1s is  FI \  D. 
• T is satisfied, as  D   is homology-simple in FI at every loop iteration. 
• The subsets D are chosen to satisfy some non-topological requirements: 
  Such requirements are very important, but are not the focus of this talk. 
=============================== 
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5.  Iout
  = I 

 

Pseudocode of a Typical Parallel Thinning Algorithm 
  1.  I = Iin 
    2.  while the termination condition is not satisfied do 

  3.   │D = a subset of FI that is hereditarily homology-simple in FI 
  4.   │ I = I – D 
          └ 
 

•  In step 4,      I – D  ≝ the binary image on G whose set of 1s is  FI \  D. 
• T is satisfied, as  D   is homology-simple in FI at every loop iteration. 
• The subsets D are chosen to satisfy some non-topological requirements: 
  Such requirements are very important, but are not the focus of this talk. 
=============================== 

• For the topology preservation condition T to be satisfied, the set  
  D that is deleted at each iteration need only be homology-simple. 
 

• But algorithms in which D is hereditarily homology-simple at all  
  iterations are more common. 
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5.  Iout
  = I 

 

Pseudocode of a Typical Parallel Thinning Algorithm 
  1.  I = Iin 
    2.  while the termination condition is not satisfied do 

  3.   │D = a subset of FI that is hereditarily homology-simple in FI 
  4.   │ I = I – D 
          └ 
 

•  In step 4,      I – D  ≝ the binary image on G whose set of 1s is  FI \  D. 
• T is satisfied, as  D   is homology-simple in FI at every loop iteration. 
• The subsets D are chosen to satisfy some non-topological requirements: 
  Such requirements are very important, but are not the focus of this talk. 
=============================== 

• For the topology preservation condition T to be satisfied, the set  
  D that is deleted at each iteration need only be homology-simple. 
 

• But algorithms in which D is hereditarily homology-simple at all  
  iterations are more common. 
 

• For images on Cartesian grids, methodologies that verify or ensure D is  
  always hereditarily homology-simple have been developed since the '70s 
  by, e.g., Rosenfeld, Ronse, Hall (2D), Bertrand, Ma, Bertrand & Couprie.  
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Critical Kernels and F-⋂s (F-Intersections)  
 

Critical kernels, introduced by Bertrand (2005)––and extensively used 
and studied by Bertrand and Couprie––provide a powerful methodology 
for developing parallel thinning algorithms each of whose iterations is 
guaranteed to delete a hereditarily homology-simple set. 
 

• Suppose for example that KI is a subset of the foreground FI at some iteration  
   and (to satisfy non-topological requirements) we wish to preserve KI.  
• We can use the critical kernel of FI to find a relatively large set D of  
   elements of FI \ KI that is hereditarily homology-simple in FI, so that 
       deletion of D preserves KI and satisfies the topology-preservation condition. 
 

Let F be any finite collection of nonempty sets. An F-intersection or F-⋂ 
is a nonempty set S such that S = ⋂C for some nonempty subcollection C 
of F. Here C may consist of 1 member of F: Each member of F is an F-⋂. 
Note: 
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Critical Kernels and F-⋂s (F-Intersections)  
 

Critical kernels, introduced by Bertrand (2005)––and extensively used 
and studied by Bertrand and Couprie––provide a powerful methodology 
for developing parallel thinning algorithms each of whose iterations is 
guaranteed to delete a hereditarily homology-simple set. 
 

• Suppose for example that KI is a subset of the foreground FI at some iteration  
   and (to satisfy non-topological requirements) we wish to preserve KI.  
• We can use the critical kernel of FI to find a relatively large set D of  
   elements of FI \ KI that is hereditarily homology-simple in FI, so that 
       deletion of D preserves KI and satisfies the topology-preservation condition. 
 

Let F be any finite collection of nonempty sets. An F-intersection or F-⋂ 
is a nonempty set S such that S = ⋂C for some nonempty subcollection C 
of F. Here C may consist of 1 member of F: Each member of F is an F-⋂. 
Note: If each of A and B is an F-⋂ and A ∩ B ≠ ∅, then A ∩ B is an F-⋂. 
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Critical Kernels and F-⋂s (F-Intersections)  
 

Critical kernels, introduced by Bertrand (2005)––and extensively used 
and studied by Bertrand and Couprie––provide a powerful methodology 
for developing parallel thinning algorithms each of whose iterations is 
guaranteed to delete a hereditarily homology-simple set. 
 

• Suppose for example that KI is a subset of the foreground FI at some iteration  
   and (to satisfy non-topological requirements) we wish to preserve KI.  
• We can use the critical kernel of FI to find a relatively large set D of  
   elements of FI \ KI that is hereditarily homology-simple in FI, so that 
       deletion of D preserves KI and satisfies the topology-preservation condition. 
 

Let F be any finite collection of nonempty sets. An F-intersection or F-⋂ 
is a nonempty set S such that S = ⋂C for some nonempty subcollection C 
of F. Here C may consist of 1 member of F: Each member of F is an F-⋂. 
Note: If each of A and B is an F-⋂ and A ∩ B ≠ ∅, then A ∩ B is an F-⋂. 
 

The critical kernel of a set F of grid cells of a Cartesian grid is determined 
by a set of F-⋂s called critical F-⋂s: 
  •  The union of the critical kernel is exactly the union of the critical F-⋂s. 
  •  An F-⋂ is in the critical kernel just if it is contained in a critical F-⋂. 
=============================== 
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Let F be any finite collection of nonempty sets. An F-intersection or F-⋂ 
is a nonempty set S such that S = ⋂C for some nonempty subcollection C 
of F. Here C may consist of 1 member of F: Each member of F is an F-⋂. 
Note: If each of A and B is an F-⋂ and A ∩ B ≠ ∅, then A ∩ B is an F-⋂. 
 

The critical kernel of a set F of grid cells of a Cartesian grid is determined 
by a set of F-⋂s called critical F-⋂s: 
  •  The union of the critical kernel is exactly the union of the critical F-⋂s. 
  •  An F-⋂ is in the critical kernel just if it is contained in a critical F-⋂. 
=============================== 
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Let F be any finite collection of nonempty sets. An F-intersection or F-⋂ 
is a nonempty set S such that S = ⋂C for some nonempty subcollection C 
of F. Here C may consist of 1 member of F: Each member of F is an F-⋂. 
Note: If each of A and B is an F-⋂ and A ∩ B ≠ ∅, then A ∩ B is an F-⋂. 
 

The critical kernel of a set F of grid cells of a Cartesian grid is determined 
by a set of F-⋂s called critical F-⋂s: 
  •  The union of the critical kernel is exactly the union of the critical F-⋂s. 
  •  An F-⋂ is in the critical kernel just if it is contained in a critical F-⋂. 
=============================== 

• When F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid,  
       a theorem of Bertrand & Couprie (2009) characterizes a minimal  
       non-simple subset of F (a concept due to Ronse) as a subset of F  
       that is the “clique” induced by an inclusion-maximal critical F-⋂. 
• If F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid and  
       D ⊆ F, then   
                  D is hereditarily homology-simple in F  
                                 ⇔   D contains no minimal non-simple subset of F 
From this equivalence and Bertrand & Couprie's characterization of the 
minimal non-simple subsets of F we can deduce:  
=============================== 
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The critical kernel of a set F of grid cells of a Cartesian grid is determined 
by a set of F-⋂s called critical F-⋂s: 
  •  The union of the critical kernel is exactly the union of the critical F-⋂s. 
  •  An F-⋂ is in the critical kernel just if it is contained in a critical F-⋂. 
=============================== 

• When F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid,  
       a theorem of Bertrand & Couprie (2009) characterizes a minimal  
       non-simple subset of F (a concept due to Ronse) as a subset of F  
       that is the “clique” induced by an inclusion-maximal critical F-⋂. 
• If F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid and  
       D ⊆ F, then   
                  D is hereditarily homology-simple in F  
                                 ⇔   D contains no minimal non-simple subset of F 
From this equivalence and Bertrand & Couprie's characterization of the 
minimal non-simple subsets of F we can deduce: 
=============================== 
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The critical kernel of a set F of grid cells of a Cartesian grid is determined 
by a set of F-⋂s called critical F-⋂s: 
  •  The union of the critical kernel is exactly the union of the critical F-⋂s. 
  •  An F-⋂ is in the critical kernel just if it is contained in a critical F-⋂. 
=============================== 

• When F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid,  
       a theorem of Bertrand & Couprie (2009) characterizes a minimal  
       non-simple subset of F (a concept due to Ronse) as a subset of F  
       that is the “clique” induced by an inclusion-maximal critical F-⋂. 
• If F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid and  
       D ⊆ F, then   
                  D is hereditarily homology-simple in F  
                                 ⇔   D contains no minimal non-simple subset of F 
From this equivalence and Bertrand & Couprie's characterization of the 
minimal non-simple subsets of F we can deduce:  
=============================== 

THEOREM (Bertrand & Couprie)  If F is any finite set of grid cells of a 
2D, 3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
   1. D is hereditarily homology-simple in F. 
   2. Every F-⋂ in F's critical kernel is contained in a member of F \ D. 
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Recall: The critical kernel of a set F of grid cells of a Cartesian grid is determined by a  
             certain set of F-⋂s called critical F-⋂s.  

• An F-⋂ is in the critical kernel just if it is contained in a critical F-⋂.        
• If F is a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid and D ⊆ F, then   

                         D is hereditarily homology-simple in F  
                                       ⇔   D contains no minimal non-simple subset of F 
 

            From this equivalence and Bertrand & Couprie's characterization of the minimal              
            non-simple subsets of F we can deduce: 
 

     THEOREM (Bertrand & Couprie)  If F is any finite set of grid cells of a  
            2D, 3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
                  1. D is hereditarily homology-simple in F. 
                  2. Every F-⋂ in F's critical kernel is contained in a member of F \ D. 
 
Equivalently: 
 

THEOREM (Bertrand & Couprie)  If F is any finite set of grid cells of a 
2D, 3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
   1. D is hereditarily homology-simple in F. 
   2. Every F-critical F-⋂ is contained in a member of F \ D. 
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Recall: From Bertrand & Couprie's characterization of the minimal non-simple subsets  
       of a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid we can deduce: 
      Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a  
             2D,  3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
          1. D is hereditarily homology-simple in F. 
         2. Every F-critical F-⋂ is contained in a member of F \ D. 
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Recall: From Bertrand & Couprie's characterization of the minimal non-simple subsets  
       of a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid we can deduce: 
      Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a  
             2D,  3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
          1. D is hereditarily homology-simple in F. 
         2. Every F-critical F-⋂ is contained in a member of F \ D. 
Conversely, when F is any finite set of grid cells of a 2D, 3D, or 4D 
Cartesian grid one can deduce Bertrand and Couprie's characterization of 
the minimal non-simple subsets of F from this theorem (and the fact that 
a subset T of F is a minimal non-simple subset of F if and only if  
(i) T is not hereditarily homology-simple in F, but (ii) every proper subset 
of T is hereditarily homology-simple in F).     
 

If T is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid, then 
Bertrand & Couprie's characterization of minimal non-simple sets implies 
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Recall: From Bertrand & Couprie's characterization of the minimal non-simple subsets  
       of a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid we can deduce: 
      Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a  
             2D,  3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
          1. D is hereditarily homology-simple in F. 
         2. Every F-critical F-⋂ is contained in a member of F \ D. 
Conversely, when F is any finite set of grid cells of a 2D, 3D, or 4D 
Cartesian grid one can deduce Bertrand and Couprie's characterization of 
the minimal non-simple subsets of F from this theorem (and the fact that 
a subset T of F is a minimal non-simple subset of F if and only if  
(i) T is not hereditarily homology-simple in F, but (ii) every proper subset 
of T is hereditarily homology-simple in F).     
 

If T is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid, then 
Bertrand & Couprie's characterization of minimal non-simple sets implies 
     ∃F . T  is a minimal non-simple set of F       ⇔    ⋂T ≠ ∅ 
and (using another theorem from Bertrand & Couprie (2009)) also implies 
     ∃F . (T  is a minimal non-simple set of F              ⋂T  consists of more 
           and ⋃T is not a component of ⋃F)     ⇔     than just one point. 
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Recall: From Bertrand & Couprie's characterization of the minimal non-simple subsets  
       of a finite set of grid cells of a 2D, 3D, or 4D Cartesian grid we can deduce: 
      Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a  
             2D,  3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
          1. D is hereditarily homology-simple in F. 
         2. Every F-critical F-⋂ is contained in a member of F \ D. 
Conversely, when F is any finite set of grid cells of a 2D, 3D, or 4D 
Cartesian grid one can deduce Bertrand and Couprie's characterization of 
the minimal non-simple subsets of F from this theorem (and the fact that 
a subset T of F is a minimal non-simple subset of F if and only if  
(i) T is not hereditarily homology-simple in F, but (ii) every proper subset 
of T is hereditarily homology-simple in F).     
 

If T is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid, then 
Bertrand & Couprie's characterization of minimal non-simple sets implies 
     ∃F . T  is a minimal non-simple set of F       ⇔    ⋂T ≠ ∅ 
and (using another theorem from Bertrand & Couprie (2009)) also implies 
     ∃F . (T  is a minimal non-simple set of F              ⋂T  consists of more 
           and ⋃T is not a component of ⋃F)     ⇔     than just one point. 
 

• These facts were originally proved over many years by Ronse (1988, 2D),           
  Ma (1994, 3D), Kong (1995, 3D), and Gau & Kong (2003, 4D).  
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Recall: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
        3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
       1. D is hereditarily homology-simple in F. 
      2. Every F-critical F-⋂ is contained in a member of F \ D. 
 
 

Generalizing the Bertrand-Couprie Theorem 
 

Bertrand & Couprie's F-critical F-⋂s are defined in terms of collapsing of 
subcomplexes of the cubical complex whose set of facets is F. But we are 
going to use a more general concept: F-homology-critical F-⋂s.  
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Recall: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
        3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
       1. D is hereditarily homology-simple in F. 
      2. Every F-critical F-⋂ is contained in a member of F \ D. 
 
 

Generalizing the Bertrand-Couprie Theorem 
 

Bertrand & Couprie's F-critical F-⋂s are defined in terms of collapsing of 
subcomplexes of the cubical complex whose set of facets is F. But we are 
going to use a more general concept: F-homology-critical F-⋂s.  
 

Unlike F-critical F-⋂s, F-homology-critical F-⋂s are defined in a way 
that doesn't depend on the existence of a complex whose set of facets is F:  
The definition is valid even if the interiors of some members of F overlap. 
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Recall: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
        3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
       1. D is hereditarily homology-simple in F. 
      2. Every F-critical F-⋂ is contained in a member of F \ D. 
 
 

Generalizing the Bertrand-Couprie Theorem 
 

Bertrand & Couprie's F-critical F-⋂s are defined in terms of collapsing of 
subcomplexes of the cubical complex whose set of facets is F. But we are 
going to use a more general concept: F-homology-critical F-⋂s.  
 

Unlike F-critical F-⋂s, F-homology-critical F-⋂s are defined in a way 
that doesn't depend on the existence of a complex whose set of facets is F:  
The definition is valid even if the interiors of some members of F overlap. 
 

It follows from results of Couprie & Bertrand (2009) and Kong (1997) 
that if F is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid  
then:                    F-homology-critical  ⇔  F-critical 
 

Hence: 
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Recall: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
        3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
       1. D is hereditarily homology-simple in F. 
      2. Every F-critical F-⋂ is contained in a member of F \ D. 
 
 

Generalizing the Bertrand-Couprie Theorem 
 

Bertrand & Couprie's F-critical F-⋂s are defined in terms of collapsing of 
subcomplexes of the cubical complex whose set of facets is F. But we are 
going to use a more general concept: F-homology-critical F-⋂s.  
 

Unlike F-critical F-⋂s, F-homology-critical F-⋂s are defined in a way 
that doesn't depend on the existence of a complex whose set of facets is F:  
The definition is valid even if the interiors of some members of F overlap. 
 

It follows from results of Couprie & Bertrand (2009) and Kong (1997) 
that if F is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid  
then:                    F-homology-critical  ⇔  F-critical 
 

Hence: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
         3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
            1. D is hereditarily homology-simple in F. 
          2. Every F-homology-critical F-⋂ is contained in a member of F \ D.  
=============================== 
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Generalizing the Bertrand-Couprie Theorem 
 

Bertrand & Couprie's F-critical F-⋂s are defined in terms of collapsing of 
subcomplexes of the cubical complex whose set of facets is F. But we are 
going to use a more general concept: F-homology-critical F-⋂s.  
 

Unlike F-critical F-⋂s, F-homology-critical F-⋂s are defined in a way 
that doesn't depend on the existence of a complex whose set of facets is F:  
The definition is valid even if the interiors of some members of F overlap. 
 

It follows from results of Couprie & Bertrand (2009) and Kong (1997) 
that if F is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid  
then:                    F-homology-critical  ⇔  F-critical 
Hence: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
         3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
            1. D is hereditarily homology-simple in F. 
          2. Every F-homology-critical F-⋂ is contained in a member of F \ D.  
=============================== 
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Generalizing the Bertrand-Couprie Theorem 
 

Bertrand & Couprie's F-critical F-⋂s are defined in terms of collapsing of 
subcomplexes of the cubical complex whose set of facets is F. But we are 
going to use a more general concept: F-homology-critical F-⋂s.  
 

Unlike F-critical F-⋂s, F-homology-critical F-⋂s are defined in a way 
that doesn't depend on the existence of a complex whose set of facets is F:  
The definition is valid even if the interiors of some members of F overlap. 
 

It follows from results of Couprie & Bertrand (2009) and Kong (1997) 
that if F is any finite set of grid cells of a 2D, 3D, or 4D Cartesian grid  
then:                    F-homology-critical  ⇔  F-critical 
Hence: Theorem (Bertrand & Couprie)  If F is any finite set of grid cells of a 2D, 
         3D, or 4D Cartesian grid, and D ⊆ F, then the following are equivalent: 
            1. D is hereditarily homology-simple in F. 
          2. Every F-homology-critical F-⋂ is contained in a member of F \ D.  
=============================== 
• Our main result is that this version of the theorem is valid much more  
   generally: It is valid when F is any finite set of acyclic polyhedra whose  
   nonempty intersections are acyclic.  
 

   For example, it is valid when F is any finite set of convex polytopes. 
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Acyclic Polyhedra 
 

A convex polytope is a set that is the convex hull of  
a finite set of points in some Euclidean space Rn. 
 

A polyhedron is a set that is the union of a finite 
collection of convex polytopes in a Euclidean space.  
    • The union of any finite collection of polyhedra is a polyhedron. 
    • The intersection of any finite collection of polyhedra is a polyhedron. 
 

A set P is said to be acyclic if  
    1. P is nonempty and connected, and 
    2. P has trivial homology in all positive dimensions  
        (intuitively, "P has no holes of any dimension"). 
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Acyclic Polyhedra 
 

A convex polytope is a set that is the convex hull of  
a finite set of points in some Euclidean space Rn. 
 

A polyhedron is a set that is the union of a finite 
collection of convex polytopes in a Euclidean space.  
    • The union of any finite collection of polyhedra is a polyhedron. 
    • The intersection of any finite collection of polyhedra is a polyhedron. 
 

A set P is said to be acyclic if  
    1. P is nonempty and connected, and 
    2. P has trivial homology in all positive dimensions  
        (intuitively, "P has no holes of any dimension"). 
 

In the plane R2
, a polyhedron P is acyclic if and only if 

   1. P is nonempty and connected, and 
   2. R2 \ P is connected—i.e., P has no holes. 
=============================== 
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A polyhedron is a set that is the union of a finite 
collection of convex polytopes in a Euclidean space.  
    • The union of any finite collection of polyhedra is a polyhedron. 
    • The intersection of any finite collection of polyhedra is a polyhedron. 
 

A set P is said to be acyclic if  
    1. P is nonempty and connected, and 
    2. P has trivial homology in all positive dimensions  
        (intuitively, "P has no holes of any dimension"). 
 

In the plane R2
, a polyhedron P is acyclic if and only if 

   1. P is nonempty and connected, and 
   2. R2 \ P is connected—i.e., P has no holes. 
=============================== 
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A polyhedron is a set that is the union of a finite 
collection of convex polytopes in a Euclidean space.  
    • The union of any finite collection of polyhedra is a polyhedron. 
    • The intersection of any finite collection of polyhedra is a polyhedron. 
 

A set P is said to be acyclic if  
    1. P is nonempty and connected, and 
    2. P has trivial homology in all positive dimensions  
        (intuitively, "P has no holes of any dimension"). 
 

In the plane R2
, a polyhedron P is acyclic if and only if 

   1. P is nonempty and connected, and 
   2. R2 \ P is connected—i.e., P has no holes. 
=============================== 
In R3

, a polyhedron P is acyclic if and only if the following are all true: 
   1. P is nonempty and connected. 
   2. R3 \ P is connected—i.e., P has no internal cavities. 
   3. The Euler characteristic of P is 1. 
When 1 and 2 hold, 3 holds if and only if P "has no holes or tunnels" 
(and if and only if P is simply connected).  
=============================== 
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A set P is said to be acyclic if  
    1. P is nonempty and connected, and 
    2. P has trivial homology in all positive dimensions. 
=============================== 
In R3

, a polyhedron P is acyclic if and only if the following are all true: 
   1. P is nonempty and connected. 
   2. R3 \ P is connected—i.e., P has no internal cavities. 
   3. The Euler characteristic of P is 1. 
When 1 and 2 hold, 3 holds if and only if P "has no holes or tunnels" 
(and if and only if P is simply connected).  
=============================== 
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A set P is said to be acyclic if  
    1. P is nonempty and connected, and 
    2. P has trivial homology in all positive dimensions. 
=============================== 
In R3

, a polyhedron P is acyclic if and only if the following are all true: 
   1. P is nonempty and connected. 
   2. R3 \ P is connected—i.e., P has no internal cavities. 
   3. The Euler characteristic of P is 1. 
When 1 and 2 hold, 3 holds if and only if P "has no holes or tunnels" 
(and if and only if P is simply connected).  
=============================== 
In Rn

 (for any dimension n), we have that: 
   • Any convex polytope is acyclic; more generally, if C is any nonempty  
         collection of convex sets such that ⋂C ≠ ∅, then ⋃C is acyclic. 
   • If P and Q are two acyclic polyhedra such that P∩Q is acyclic, then 
         P∪Q is also acyclic. 
 

We say a set G of polyhedra is good if G is finite, each member of G is 
acyclic, and every nonempty intersection of ≥ 2 members of G is acyclic. 
Example: Any finite set of convex polytopes is a good set of polyhedra. 
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F-Cores of F-⋂s; F-Homology-Critical F-⋂s 
 
 

Let F be any finite collection of nonempty sets.  Recall that an F-⋂ is a   
nonempty set S such that S = ⋂C for some nonempty subcollection C of F. 
[C may consist of just one member of  F: Any member of F is an F-⋂!] 
 
 

We now define the F-core of an F-⋂.  
 

This concept is very similar to Bertrand's concept of the core of a cell of a 
complex (but does not refer to any complex). 
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F-Cores of F-⋂s; F-Homology-Critical F-⋂s 
 
 

Let F be any finite collection of nonempty sets.  Recall that an F-⋂ is a   
nonempty set S such that S = ⋂C for some nonempty subcollection C of F. 
[C may consist of just one member of  F: Any member of F is an F-⋂!] 
 
 

We now define the F-core of an F-⋂.  
 

This concept is very similar to Bertrand's concept of the core of a cell of a 
complex (but does not refer to any complex). 
 
 

If C is an F-⋂, then we define: CoreF(C)  ≝  C ∩ ⋃{F ∈ F | F ⊉ C}    
 

Thus:    CoreF(C)  =  the intersection of C with the union of those members  
     of  F that do not contain C. 
 

We call CoreF(C) the F-core of C. 
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F-Cores of F-⋂s; F-Homology-Critical F-⋂s 
 
 

Let F be any finite collection of nonempty sets.  Recall that an F-⋂ is a   
nonempty set S such that S = ⋂C for some nonempty subcollection C of F. 
[C may consist of just one member of  F: Any member of F is an F-⋂!] 
 
 

We now define the F-core of an F-⋂.  
 

This concept is very similar to Bertrand's concept of the core of a cell of a 
complex (but does not refer to any complex). 
 
 

If C is an F-⋂, then we define: CoreF(C)  ≝  C ∩ ⋃{F ∈ F | F ⊉ C}    
 

Thus:    CoreF(C)  =  the intersection of C with the union of those members  
     of  F that do not contain C. 
 

We call CoreF(C) the F-core of C. 
 

An F-⋂ C is said to be F-homology-critical if CoreF(C) is not acyclic. 
Hence: An F-⋂ is F-homology-critical if and only if its F-core is ∅, or is 
disconnected, or has nontrivial homology in some positive dimension. 
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Three Examples of  F-⋂s That are NOT F-Homology-Critical 
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Six Examples of F-Homology-Critical F-⋂s 
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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Recall: If C is any F-⋂, then 
 

                CoreF(C)  ≝  C ∩ ⋃{F ∈ F | F ⊉ C}    
                                       = the intersection of C with the union of those         
             members of F that do not contain C. 
 

              An F-⋂ C is said to be F-homology-critical if CoreF(C) is  not acyclic. 
              ∴ An F-⋂ is F-homology-critical if and only if  its F-core is ∅, or is  
                   disconnected, or has nontrivial homology in some positive dimension. 
 

We define the homology-critical kernel of F to be the set of all  
F-homology-critical F-⋂s. 
 

Notes: 1. If F is a set of grid cells of a 2D, 3D, or 4D Cartesian grid, then 
                an F-⋂ is F-homology-critical if and only if it is F-critical in the   
                sense of Bertrand and Couprie. (This follows from results  
                established by Couprie & Bertrand (2009) and Kong (1997).) 
 

            2. If C is any F-⋂, then it is readily confirmed that: 
                       CoreF(C)  = ⋃{C ∩ F | F ∈ F and F ⊉ C}  
                                   = ⋃{Y | Y is an F-⋂ and Y ⊊ C} 
                                 = the union of the F-⋂s strictly contained in C. 
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ℙ-Homology-Simple Elements 
 

Let F be a finite set of polyhedra.  If Q ∈ D ⊆ F, then we say  
Q is ℙ-homology-simple for D in F if the following is true:   
       • Q is homology-simple in F \ S  for all S ⊆ D \ {Q}.   
 

This definition is a straightforward generalization of a concept that was 
originally defined by Bertrand (1995). 
 

Note: If Q ∈ D'  ⊆ D ⊆ F  and  Q is ℙ-homology-simple for D in F, then 
          it is evident that Q is also ℙ-homology-simple for D' in F. 
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ℙ-Homology-Simple Elements 
 

Let F be a finite set of polyhedra.  If Q ∈ D ⊆ F, then we say  
Q is ℙ-homology-simple for D in F if the following is true:   
       • Q is homology-simple in F \ S  for all S ⊆ D \ {Q}.   
 

This definition is a straightforward generalization of a concept that was 
originally defined by Bertrand (1995). 
 

Note: If Q ∈ D'  ⊆ D ⊆ F  and  Q is ℙ-homology-simple for D in F, then 
          it is evident that Q is also ℙ-homology-simple for D' in F. 
 

We will see that: D is hereditarily homology-simple in F  if and only if 
every element of D is ℙ-homology-simple for D in F. 
 

Now consider the subset of D defined by: 
        ℙ(D, F) = {Q ∈ D | Q is ℙ-homology-simple for D in F} 
From the case  D' = ℙ(D, F)  of the above Note, we see that  
every element of  ℙ(D, F) is ℙ-homology-simple for ℙ(D, F) in F.  Hence: 
 

    For any D ⊆ F, the set ℙ(D, F) is hereditarily homology-simple in F. 
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A Local Characterization of ℙ-Homology-Simpleness 
 

Our 1st main result characterizes ℙ-homology-simpleness locally, in 
terms of  F-homology-critical F-⋂s.  
 
When F is a set of grid cells of a 2D, 3D, or 4D Cartesian grid, one can 
deduce this theorem from a theorem of Bertrand & Couprie (2009), since 
one can show [using results of Couprie & Bertrand (2009)] that in this 
case "F-homology-critical" and "ℙ-homology-simple" are equivalent to 
the concepts of "critical" and "P-simple" used by Bertrand & Couprie: 
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A Local Characterization of ℙ-Homology-Simpleness 
 

Our 1st main result characterizes ℙ-homology-simpleness locally, in 
terms of  F-homology-critical F-⋂s.  
 
When F is a set of grid cells of a 2D, 3D, or 4D Cartesian grid, one can 
deduce this theorem from a theorem of Bertrand & Couprie (2009), since 
one can show [using results of Couprie & Bertrand (2009)] that in this 
case "F-homology-critical" and "ℙ-homology-simple" are equivalent to 
the concepts of "critical" and "P-simple" used by Bertrand & Couprie: 
 
 

MAIN THEOREM 1  Let F be any finite set of polyhedra such that every 
F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
   1. Q is ℙ-homology-simple for D in F.  
   2. Every F-homology-critical D-⋂ contained in Q is also  
       contained in a member of F \ D. 
 

Note: Condition 2 ⇔ Every F-homology-critical F-⋂ contained in Q is  
                                    also contained in a member of F \ D. 
 

          since any F-⋂ that's not a D-⋂ is evidently contained in a member  
          of F \ D! 
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Attachment Set of a Polyhedron in a Set of Polyhedra 
 

If P is a polyhedron and L a set of polyhedra then we define 
                  Attach(P, L)  ≝  P ∩ ⋃(L \ {P})    
and we call this set the L-attachment set of P.  Note that:  
   1. Attach(P, L) = Attach(P, L ∪{P}) = Attach(P, L \{P}) 
   2. If P ∉ L, then Attach(P, L) = P ∩ ⋃L. 
   3. If P is an inclusion-maximal member of L, Attach(P, L) = CoreL(P).       
   4. If P is not an inclusion-maximal member of L, Attach(P, L) = P. 
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Attachment Set of a Polyhedron in a Set of Polyhedra 
 

If P is a polyhedron and L a set of polyhedra then we define 
                  Attach(P, L)  ≝  P ∩ ⋃(L \ {P})    
and we call this set the L-attachment set of P.  Note that:  
   1. Attach(P, L) = Attach(P, L ∪{P}) = Attach(P, L \{P}) 
   2. If P ∉ L, then Attach(P, L) = P ∩ ⋃L. 
   3. If P is an inclusion-maximal member of L, Attach(P, L) = CoreL(P).       
   4. If P is not an inclusion-maximal member of L, Attach(P, L) = P. 
  

If L is the set of pale gray and dark gray squares on the right,  
then the L-attachment set or L-core of any pale gray square  
is the union of its black 0- and 1-faces. 
 

If L is the set of 6 cubes shown below, and  
P is this cube                         
                                    . . .  then Attach(P, L) = CoreL(P) 
                                     is the union of the 0-, 1-, and 2-faces 
                                     that are colored black here: 
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In the sequel, F denotes a finite set of acyclic polyhedra.  
(Many later results will further assume that every F-⋂ is acyclic.) 
 

Proposition 1: Let Q ∈ L ⊆ F. Then the following are equivalent:  
 (a) Q is homology-simple in L.     (b) Attach(Q, L) is acyclic. 
 

Note:  If Q is inclusion-maximal in L, then  Attach(Q, L) = CoreL(Q) and  
           so  Q is homology-simple in L  ⇔  Q is not L-homology-critical. 
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In the sequel, F denotes a finite set of acyclic polyhedra.  
(Many later results will further assume that every F-⋂ is acyclic.) 
 

Proposition 1: Let Q ∈ L ⊆ F. Then the following are equivalent:  
 (a) Q is homology-simple in L.     (b) Attach(Q, L) is acyclic. 
 

Note:  If Q is inclusion-maximal in L, then  Attach(Q, L) = CoreL(Q) and  
           so  Q is homology-simple in L  ⇔  Q is not L-homology-critical. 
 
 

Corollary 2: Let Q ∈ D ⊆ F. Then Q is ℙ-homology-simple for D in F  
if and only if  Attach(Q, F \ S) is acyclic for all S ⊆ D .  
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≅
 by Excision 

In the sequel, F denotes a finite set of acyclic polyhedra.  
(Many later results will further assume that every F-⋂ is acyclic.) 
 

Proposition 1: Let Q ∈ L ⊆ F. Then the following are equivalent:  
 (a) Q is homology-simple in L.     (b) Attach(Q, L) is acyclic. 
 

Note:  If Q is inclusion-maximal in L, then  Attach(Q, L) = CoreL(Q) and  
           so  Q is homology-simple in L  ⇔  Q is not L-homology-critical. 
 
 

Corollary 2: Let Q ∈ D ⊆ F. Then Q is ℙ-homology-simple for D in F  
if and only if  Attach(Q, F \ S) is acyclic for all S ⊆ D .  
 

Prop. 1 follows from the fact that  Attach(Q, L) = Q ∩ ⋃(L \ {Q}) and 
results of topology: Reduced homology sequences and the Excision Thm.  
                                      B                                                         A      
          0                                  0?                     ≅                      0?                               0                  
⟶   𝐻𝐻�𝑝𝑝(Q)       ⟶     𝐻𝐻�𝑝𝑝(Q, Attach(Q, L))    ⟶     𝐻𝐻�𝑝𝑝−1(Attach(Q, L)) ⟶   𝐻𝐻�𝑝𝑝−1(Q)    ⟶ 
                                       
 

⟶   𝐻𝐻�𝑝𝑝(⋃L)    ⟶     𝐻𝐻�𝑝𝑝(⋃L, ⋃(L \{Q}))      ⟶      𝐻𝐻�𝑝𝑝−1(⋃(L \{Q}))   ⟶    𝐻𝐻�𝑝𝑝−1(⋃L) ⟶ 
≅?                    0?                  0?                    0?                                      ≅?                    0?   
 D                            C                          B                            C                                                    D                             C 
                                                       A ⇔ B ⇔ C ⇔ D 
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Lemma 3: Let T ⊆ F 
and let Q ∈ F \ T. Then  
all of the following are true  
if any two are true:  
  A.  T  is homology-simple in F. 
  B.  T  ∪ {Q} is homology-simple in F. 
  C.  Q is homology-simple in F \ T. 
 
 
• The conclusion of Lemma 3 remains true––with the same proof––if 
   we replace {Q} and Q in B and C with any subset T  ' of  F \ T !   
   (But we only need the special case that is stated in the lemma.) 
  
• From this lemma we can deduce the following previously stated fact: 
 

        D is hereditarily homology-simple in F    
         ⇔  D is hereditarily seq-homology-simple in F 
       ⇔  for every enumeration Q1, ..., Qk of the elements of D  
                             Qi  is homology-simple in  F \ {Q1, ..., Qi–1} for 1 ≤ i ≤ k 
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RECALL:  Lemma 3: Let S ⊆ F and let Q ∈ F \ S. Then all of the following are true  
                    if any two are true:  
                        A.  S  is homology-simple in F. 
                        B.  S  ∪ {Q} is homology-simple in F. 
                        C. {Q} is homology-simple in F \ S. 
 

Proposition 4: Let D ⊆ F. Then the following are equivalent:  
 

 1. D is hereditarily homology-simple in F. 
 
 

 2. For all Q ∈ D and S ⊆ D \{Q},  
     S  ∪{Q} is homology-simple in F  if  S  is homology-simple in F.   
 
 
      

 3. For all Q ∈ D and S ⊆ D \{Q}, {Q} is homology-simple in F \ S. 
 
 

 4.  Every Q ∈ D is ℙ-homology-simple for D in F. 
 

Proof:   2 ⇒ 1  by induction, because ∅ is homology-simple in F. 
                        3 ⇒ 2  and 1 ⇒ 3 both follow from Lemma 3. 
             3 ⇔ 4  follows from the definition of ℙ-homology-simple. // 
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RECALL:  MAIN THEOREM 1  Let F be a finite set of polyhedra such that every F-⋂  
                    is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
                         1. Q is ℙ-homology-simple for D in F.  
                         2. Every F-homology-critical D-⋂ contained in Q is also contained in a  
                             member of F \ D. 
   
  Proposition 4: Let D ⊊ F. Then the following are equivalent:  
   1. D  is hereditarily homology-simple in F.  4. Each Q ∈ D is ℙ-homology-simple for D  in 

F. 
 

A Local Characterization of Hereditarily Homology-Simple Sets 
 

From Main Theorem 1 and the equivalence of statements 1 and 4 of 
Proposition 4 we deduce: 
 

MAIN THEOREM 2: Let F be any finite set of acyclic polyhedra  
such that every F-⋂ is acyclic, and let D ⊆ F. Then the following are 
equivalent: 
   1. D is hereditarily homology-simple in F. 
   2. Every F-homology-critical D-⋂ is contained in a member of F \ D. 
==============================  
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A Local Characterization of Hereditarily Homology-Simple Sets 
 

From Main Theorem 1 and the equivalence of statements 1 and 4 of 
Proposition 4 we deduce: 
 

MAIN THEOREM 2: Let F be any finite set of acyclic polyhedra  
such that every F-⋂ is acyclic, and let D ⊆ F. Then the following are 
equivalent: 
   1. D is hereditarily homology-simple in F. 
   2. Every F-homology-critical D-⋂ is contained in a member of F \ D. 
============================== 
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A Local Characterization of Hereditarily Homology-Simple Sets 
 

From Main Theorem 1 and the equivalence of statements 1 and 4 of 
Proposition 4 we deduce: 
 

MAIN THEOREM 2: Let F be any finite set of acyclic polyhedra  
such that every F-⋂ is acyclic, and let D ⊆ F. Then the following are 
equivalent: 
   1. D is hereditarily homology-simple in F. 
   2. Every F-homology-critical D-⋂ is contained in a member of F \ D. 
============================== 
 

2 ⇔ Every F-homology-critical F-⋂ is contained in a member of F \ D. 
 

since an F-⋂ that's not a D-⋂ is evidently contained in a member of F \ D! 
 
If no member of F contains another member of F, then  
condition 2 implies that  
                no member of D is F-homology-critical  
or, equivalently, that 
                every member of D is homology-simple in  F 
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Recall:  MAIN THM. 1  Let F be any finite set of polyhedra such that every F-⋂   
  is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
         1. Q is ℙ-homology-simple for D in F.  
         2. Every F-homology-critical D-⋂ contained in Q is also contained in   
        a member of F \ D. 
 

  MAIN THM. 2: Let F be any finite set of polyhedra such that every F-⋂   
  is acyclic, and let D ⊆ F. Then the following are equivalent: 
         1. D is hereditarily homology-simple in F. 
         2. Every F-homology-critical D-⋂ is contained in a member of F \ D. 
 
 
 
 
 

Notation: If C is any F-⋂, we define  FC  ≝ {F ∈ F | F ⊇ C}  (so ⋂FC = C). 
 

We now restate Main Theorems 1 & 2 in terms of these sets FC: 
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Recall:  MAIN THM. 1  Let F be any finite set of polyhedra such that every F-⋂   
  is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
         1. Q is ℙ-homology-simple for D in F.  
         2. Every F-homology-critical D-⋂ contained in Q is also contained in   
        a member of F \ D. 
 

  MAIN THM. 2: Let F be any finite set of polyhedra such that every F-⋂   
  is acyclic, and let D ⊆ F. Then the following are equivalent: 
         1. D is hereditarily homology-simple in F. 
         2. Every F-homology-critical D-⋂ is contained in a member of F \ D. 
 
 
 
 
 

Notation: If C is any F-⋂, we define  FC  ≝ {F ∈ F | F ⊇ C}  (so ⋂FC = C). 
 

We now restate Main Theorems 1 & 2 in terms of these sets FC: 
 

THEOREM: Let F be any finite set of polyhedra such that every F-⋂ is 
acyclic, and let Q ∈ D ⊆ F. Then: 
 

     (i)  Q is ℙ-homology-simple for D in F  if and only if  
           there is no F-homology-critical F-⋂ C such that Q ∈ FC ⊆ D. 
 

     (ii) D is hereditarily homology-simple in F  if and only if  
           there is no F-homology-critical F-⋂ C such that  FC ⊆ D. 
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Another Version of the Main Results When F is Strongly Normal (SN) 
 

Let F be any finite collection of polyhedra such that every F-⋂ is acyclic.  
Then for every P ∈ F, we define:  N *(P, F) = { F ∈ F  \ {P} | F ∩ P ≠ ∅}       
Each member of N *(P, F) will be called an F-neighbor of P. 
 

We say F is strongly normal (SN) if the following is true:    
                               • ∀P ∈ F  .  P intersects every nonempty intersection  
                 of two or more F-neighbors of P. 
      Equivalently:   • ∀P ∈ F  .  P intersects every N *(P, F)-⋂. 
 
 

Motivating Example: Any set of grid cells of a Cartesian grid (of any  
      dimension) is SN. 
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Another Version of the Main Results When F is Strongly Normal (SN) 
 

Let F be any finite collection of polyhedra such that every F-⋂ is acyclic.  
Then for every P ∈ F, we define:  N *(P, F) = { F ∈ F  \ {P} | F ∩ P ≠ ∅}       
Each member of N *(P, F) will be called an F-neighbor of P. 
 

We say F is strongly normal (SN) if the following is true:    
                               • ∀P ∈ F  .  P intersects every nonempty intersection  
                 of two or more F-neighbors of P. 
      Equivalently:   • ∀P ∈ F  .  P intersects every N *(P, F)-⋂. 
 
 

Motivating Example: Any set of grid cells of a Cartesian grid (of any  
      dimension) is SN. 
 

•  F is SN   ⇒  every subcollection of F is strongly normal 
 

•  F is SN  ⇔  F is a Helly family of order 2 
 

•  F is SN  ⇔  the collection of all F-⋂s is strongly normal  
 

SN collections were studied in several papers (1998 – 2007) by  
Saha, Rosenfeld, and others (Majumder, Brass, Kong). 
 

If F is SN, we can state Main Theorems 1 and 2 in terms of "cliques" in F. 
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A Non-Strongly Normal Collection, and a Strongly Normal Collection 
 

From: T.Y. Kong, P.K. Saha, A. Rosenfeld, Strongly normal sets of contractible tiles in N dimensions,      
           Pattern Recognition 40 (2007) 530 – 543. 
 
 
 

                                                            
 
 
 
 
 
 
 
 

In (a), F ={P, Q1, ..., Q7, R} is                In (b), {P, Q1, ..., Q7, R} is 
not a strongly normal collection.             a strongly normal collection. 
 

Reason: 
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A Non-Strongly Normal Collection, and a Strongly Normal Collection 
 

From: T.Y. Kong, P.K. Saha, A. Rosenfeld, Strongly normal sets of contractible tiles in N dimensions,      
           Pattern Recognition 40 (2007) 530 – 543. 
 
 
 

                                                            
 
 
 
 
 
 
 
 

In (a), F ={P, Q1, ..., Q7, R} is                In (b), {P, Q1, ..., Q7, R} is 
not a strongly normal collection.             a strongly normal collection. 
 

Reason:  Q1 and Q2 are F-neighbors of  
P, Q1 ∩ Q2 ≠ ∅, but P ∩ Q1 ∩ Q2 = ∅. 
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In (a), F ={P, Q1, ..., Q7, R} is                In (b), {P, Q1, ..., Q7, R} is 
not a strongly normal collection.             a strongly normal collection. 
 

Reason:  Q1 and Q2 are F-neighbors of  
P, Q1 ∩ Q2 ≠ ∅, but P ∩ Q1 ∩ Q2 = ∅. 
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In (a), F ={P, Q1, ..., Q7, R} is                In (b), {P, Q1, ..., Q7, R} is 
not a strongly normal collection.             a strongly normal collection. 
 

Reason:  Q1 and Q2 are F-neighbors of  
P, Q1 ∩ Q2 ≠ ∅, but P ∩ Q1 ∩ Q2 = ∅. 

 

Another example: Let F = {F0, ..., Fn} be the set of all (n – 1)-dimensional 
faces of an n -dimensional simplex. Then F is not strongly normal (since 
F1, ..., Fn are F-neighbors of F0,  F1∩ ... ∩Fn ≠ ∅, but F0∩F1∩ ... ∩Fn = ∅). 
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When F is a good collection of polyhedra that is strongly normal, there is 
an alternative characterization of F-homology-critical F-⋂s: 
 

Lemma: Let F be any strongly normal finite set of polyhedra such that 
every F-⋂ is acyclic, and let C be any F-⋂. Then C is F-homology-critical  
just if  ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
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When F is a good collection of polyhedra that is strongly normal, there is 
an alternative characterization of F-homology-critical F-⋂s: 
 

Lemma: Let F be any strongly normal finite set of polyhedra such that 
every F-⋂ is acyclic, and let C be any F-⋂. Then C is F-homology-critical  
just if  ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
 

Recall that, if Q is an inclusion-maximal member of F (so FQ = {Q}), then          
         Q is homology-simple in F  ⇔  Q is not F-homology-critical 
So on putting   C = any such Q   in the above lemma we deduce: 
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When F is a good collection of polyhedra that is strongly normal, there is 
an alternative characterization of F-homology-critical F-⋂s: 
 

Lemma: Let F be any strongly normal finite set of polyhedra such that 
every F-⋂ is acyclic, and let C be any F-⋂. Then C is F-homology-critical  
just if  ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
 

Recall that, if Q is an inclusion-maximal member of F (so FQ = {Q}), then          
         Q is homology-simple in F  ⇔  Q is not F-homology-critical 
So on putting   C = any such Q   in the above lemma we deduce: 
 

Cor.: Let F be any strongly normal finite set of polyhedra such that every 
F-⋂ is acyclic, and let Q be any inclusion-maximal member of F. Then  
Q is F-homology-simple  just if  ⋃{F ∈ F \{Q} | F intersects Q} is acyclic. 
 

But this is false when F is not strongly normal: 
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When F is a good collection of polyhedra that is strongly normal, there is 
an alternative characterization of F-homology-critical F-⋂s: 
 

Lemma: Let F be any strongly normal finite set of polyhedra such that 
every F-⋂ is acyclic, and let C be any F-⋂. Then C is F-homology-critical  
just if  ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
 

Recall that, if Q is an inclusion-maximal member of F (so FQ = {Q}), then          
         Q is homology-simple in F  ⇔  Q is not F-homology-critical 
So on putting   C = any such Q   in the above lemma we deduce: 
 

Cor.: Let F be any strongly normal finite set of polyhedra such that every 
F-⋂ is acyclic, and let Q be any inclusion-maximal member of F. Then  
Q is F-homology-simple  just if  ⋃{F ∈ F \{Q} | F intersects Q} is acyclic. 
 

But this is false when F is not strongly normal: 
 

If F ={Q1, ..., Q7, P, R}, then 
Q1 is not F-homology-simple as  
Attach(Q1, F) = CoreF(Q1) is disconnected, but 
      ⋃{F ∈ F \{Q1} | F intersects Q1} = P ∪Q2  
is acyclic. 
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Recall:  THEOREM: Let F be any finite set of polyhedra such that every F-⋂ is acyclic,  
              and let Q ∈ D ⊆ F. Then: 
                   (i)  Q is ℙ-homology-simple for D in F  if and only if  
                         there is no F-homology-critical F-⋂ C such that Q ∈ FC ⊆ D. 
                   (ii) D is hereditarily homology-simple in F  if and only if  
                         there is no F-homology-critical F-⋂ C such that  FC ⊆ D. 
 

       Lemma: Let F be any strongly normal finite set of polyhedra such that every  
                F-⋂ is acyclic, and let C be any F-⋂. Then C is F-homology-critical 
               if and only if   ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
 

Hence: 
 

THEOREM: Let F be any strongly normal finite set of polyhedra such 
that every F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then: 
 

  (i)  Q is ℙ-homology-simple for D in F  if and only if   
        there is no F-⋂ C such that Q ∈ FC ⊆ D and 
         ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
  

  (ii) D is hereditarily homology-simple in F  if and only if   
        there is no F-⋂ C such that FC ⊆ D and 
         ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
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Recall: THEOREM: Let F be any finite set of polyhedra such that every F-⋂ is acyclic,  
                and let Q ∈ D ⊆ F. Then: 
      (i)  Q is ℙ-homology-simple for D in F  if and only if  
               there is no F-⋂ C such that Q ∈ FC ⊆ D and 
                 ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
      (ii) D is hereditarily homology-simple in F  if and only if   
                there is no F-⋂ C such that FC ⊆ D and 
                  ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
Following Bertrand & Couprie, we say a set S is an essential F-clique if 
S has the following three properties:    1. .S ⊆ F      2.  ⋂S ≠ ∅     3. S = F⋂S. 
      Readily:     S is an essential F-clique  ⇔ .S = FC for some F-⋂ C. 
Hence the above theorem can be restated as follows: 
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Recall: THEOREM: Let F be any finite set of polyhedra such that every F-⋂ is acyclic,  
                and let Q ∈ D ⊆ F. Then: 
      (i)  Q is ℙ-homology-simple for D in F  if and only if  
               there is no F-⋂ C such that Q ∈ FC ⊆ D and 
                 ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
      (ii) D is hereditarily homology-simple in F  if and only if   
                there is no F-⋂ C such that FC ⊆ D and 
                  ⋃{F ∈ F \ FC | F intersects each member of FC} is not acyclic. 
Following Bertrand & Couprie, we say a set S is an essential F-clique if 
S has the following three properties:    1. .S ⊆ F      2.  ⋂S ≠ ∅     3. S = F⋂S. 
      Readily:     S is an essential F-clique  ⇔ .S = FC for some F-⋂ C. 
Hence the above theorem can be restated as follows: 
  THEOREM: Let F be any strongly normal finite set of polyhedra  
  such that every F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then: 
     (i)  Q is ℙ-homology-simple for D in F  if and only if   
                there is no essential F-clique S such that Q ∈ S ⊆ D and 
                  ⋃{F ∈ F \  S | F intersects each member of S} is not acyclic. 
     (ii) D is hereditarily homology-simple in F  if and only if   
                there is no essential F-clique S such that S ⊆ D and 
                  ⋃{F ∈ F \ S | F intersects each member of S} is not acyclic. 
========================== 
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Following Bertrand & Couprie, we say a set S is an essential F-clique if 
S has the following three properties:    1. .S ⊆ F    2.  ⋂S ≠ ∅     3. S = F⋂S. 
      Readily:     S is an essential F-clique  ⇔ .S = FC for some F-⋂ C. 
Hence the above theorem can be restated as follows: 
  THEOREM: Let F be any strongly normal finite set of polyhedra  
  such that every F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then: 
     (i)  Q is ℙ-homology-simple for D in F  if and only if   
                there is no essential F-clique S such that Q ∈ S ⊆ D and 
                  ⋃{F ∈ F \  S | F intersects each member of S} is not acyclic. 
     (ii) D is hereditarily homology-simple in F  if and only if   
                there is no essential F-clique S such that S ⊆ D and 
                  ⋃{F ∈ F \ S | F intersects each member of S} is not acyclic. 
========================== 
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Following Bertrand & Couprie, we say a set S is an essential F-clique if 
S has the following three properties:    1. .S ⊆ F    2.  ⋂S ≠ ∅     3. S = F⋂S. 
      Readily:     S is an essential F-clique  ⇔ .S = FC for some F-⋂ C. 
Hence the above theorem can be restated as follows: 
  THEOREM: Let F be any strongly normal finite set of polyhedra  
  such that every F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then: 
     (i)  Q is ℙ-homology-simple for D in F  if and only if   
                there is no essential F-clique S such that Q ∈ S ⊆ D and 
                  ⋃{F ∈ F \  S | F intersects each member of S} is not acyclic. 
     (ii) D is hereditarily homology-simple in F  if and only if   
                there is no essential F-clique S such that S ⊆ D and 
                  ⋃{F ∈ F \ S | F intersects each member of S} is not acyclic. 
========================== 
• This result gives local characterizations of ℙ-homology-simpleness and 
   hereditary-homology-simpleness in terms of the "common F-neighbors"  
   of essential F-cliques (instead of cores of F-⋂s). 
 

• But it assumes F is strongly normal (unlike Main Theorems 1 & 2). 
 

• In the case where F is a set of grid cells of a 3D Cartesian grid, closely  
   related results were found by Bertrand & Couprie (2014). 
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Recall: MAIN THEOREM 1  Let F be a finite set of polyhedra such that every 
             F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
      1. Q is ℙ-homology-simple for D in F.  
      2. Every F-homology-critical D-⋂ contained in Q is also  
               contained in a member of F \ D. 
 

Proof of the 2 ⇒ 1 Part of Main Theorem 1 
 

 

We say a set C of F-⋂s is inclusion-closed if C satisfies: 
  •  Whenever X ∈ C and Y is an F-⋂ such that Y ⊆ X, we have that Y ∈ C. 
 

Lemma: Let C be any inclusion-closed set of F-⋂s,  
and let M be any inclusion-maximal member of C.  
Then C \ {M} is an inclusion-closed set of F-⋂s such that: 
   1. M ∩ ⋃(C \ {M})  =  ⋃{M ∩ Z | Z ∈ C \ {M}} 
         =  ⋃{Y | Y is an F-⋂ and Y ⊊ M} = CoreF(M)   
   2. If M is not F-homology-critical, then the inclusion of  
        ⋃(C \ {M}) in ⋃C induces a homology isomorphism. 
 

Assertion 2 follows from assertion 1, excision, and the exact homology 
sequences of  (M, M ∩ ⋃(C \ {M})) and (⋃C, ⋃(C \ {M})).   
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Recall: MAIN THEOREM 1  Let F be a finite set of polyhedra such that every 
             F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
      1. Q is ℙ-homology-simple for D in F.  
      2. Every F-homology-critical D-⋂ contained in Q is also  
               contained in a member of F \ D. 
 

Proof of the 2 ⇒ 1 Part of Main Theorem 1 
 

 

We say a set C of F-⋂s is inclusion-closed if C satisfies: 
  •  Whenever X ∈ C and Y is an F-⋂ such that Y ⊆ X, we have that Y ∈ C. 
 

Lemma: Let C be any inclusion-closed set of F-⋂s,  
and let M be any inclusion-maximal member of C.  
Then C \ {M} is an inclusion-closed set of F-⋂s such that: 
   2. If M is not F-homology-critical, then the inclusion of  
        ⋃(C \ {M}) in ⋃C induces a homology isomorphism. 
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Recall: MAIN THEOREM 1  Let F be a finite set of polyhedra such that every 
             F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
      1. Q is ℙ-homology-simple for D in F.  
      2. Every F-homology-critical D-⋂ contained in Q is also  
               contained in a member of F \ D. 
 

Proof of the 2 ⇒ 1 Part of Main Theorem 1 
 

 

We say a set C of F-⋂s is inclusion-closed if C satisfies: 
  •  Whenever X ∈ C and Y is an F-⋂ such that Y ⊆ X, we have that Y ∈ C. 
 

Lemma: Let C be any inclusion-closed set of F-⋂s,  
and let M be any inclusion-maximal member of C.  
Then C \ {M} is an inclusion-closed set of F-⋂s such that: 
   2. If M is not F-homology-critical, then the inclusion of  
        ⋃(C \ {M}) in ⋃C induces a homology isomorphism. 
 

Corollary A1: Let A ⊇ B  be any two inclusion-closed sets of  
F-⋂s such that no member of A \ B is F-homology-critical. Then the 
inclusion of ⋃B in ⋃A induces a homology isomorphism. 
========================  
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Proof of the 2 ⇒ 1 Part of Main Theorem 1 
 

 

We say a set C of F-⋂s is inclusion-closed if C satisfies: 
  •  Whenever X ∈ C and Y is an F-⋂ such that Y ⊆ X, we have that Y ∈ C. 
 

Lemma: Let C be any inclusion-closed set of F-⋂s,  
and let M be any inclusion-maximal member of C.  
Then C \ {M} is an inclusion-closed set of F-⋂s such that: 
   2. If M is not F-homology-critical, then the inclusion of  
        ⋃(C \ {M}) in ⋃C induces a homology isomorphism. 
 

Corollary A1: Let A ⊇ B  be any two inclusion-closed sets of  
F-⋂s such that no member of A \ B is F-homology-critical. Then the 
inclusion of ⋃B in ⋃A induces a homology isomorphism. 
======================== 
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Proof of the 2 ⇒ 1 Part of Main Theorem 1 
 

 

We say a set C of F-⋂s is inclusion-closed if C satisfies: 
  •  Whenever X ∈ C and Y is an F-⋂ such that Y ⊆ X, we have that Y ∈ C. 
 

Lemma: Let C be any inclusion-closed set of F-⋂s,  
and let M be any inclusion-maximal member of C.  
Then C \ {M} is an inclusion-closed set of F-⋂s such that: 
   2. If M is not F-homology-critical, then the inclusion of  
        ⋃(C \ {M}) in ⋃C induces a homology isomorphism. 
 

Corollary A1: Let A ⊇ B  be any two inclusion-closed sets of  
F-⋂s such that no member of A \ B is F-homology-critical. Then the 
inclusion of ⋃B in ⋃A induces a homology isomorphism. 
======================== 
Proof: Let C0 ⊇ ... ⊇ Ck be the sets of F-⋂s defined by C0 = A, Ck = B, and 
Cj+1 = Cj \ {Mj},  Mj an inclusion-maximal member of Cj \B,  for 0≤j<k. 
Here each Mj is also inclusion-maximal in Cj, as B is inclusion-closed. So, 
for each j, the inclusion of ⋃Cj+1 in ⋃Cj induces a homology isomorphism 
(by Lemma). Hence so does the inclusion of ⋃Ck = ⋃B in ⋃C0 = ⋃A. // 
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Recall:  Corollary A1: Let A ⊇ B  be any two inclusion-closed sets of  F-⋂s  
                such that no member of A \ B is F-homology-critical. Then the inclusion   
                 of ⋃B in ⋃A induces a homology isomorphism. 
 

  MAIN THEOREM 1  Let F be a finite set of polyhedra such that every 
              F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
      1. Q is ℙ-homology-simple for D in F.  
      2. Every F-homology-critical D-⋂ contained in Q is also  
               contained in a member of F \ D. 

 
 

Completion of the Proof of the 2 ⇒ 1 Part of Main Theorem 1 
Under the hypotheses of Main Thm. 1, let S be any subset of  D \ {Q},  
let        A = set of F-⋂s that lie in at least one member of F \ S  
and let B = set of F-⋂s that lie in at least one member of (F \ S) \ {Q}. 
So  A \ B  = set of F-⋂s that lie in Q but not in any member of (F \ S) \ {Q}. 
Now:  
       condition 2 of Main Thm. 1    
   ⇒ every F-homology-critical F-⋂ that lies in Q also 
           lies in a member of F \ D ⊆ (F \ S) \ {Q} 
   ⇒ no member of A \ B  is F-homology-critical 
   ⇒ Q is homology-simple in F \ S   (by Cor. A1) 
   ⇒ condition 1 of Main Thm. 1 (as S is an arbitrary subset of  D \ {Q}). // 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1: A Preliminary Lemma 
 

Recall: Whenever D ⊆ F and C is a D-⋂, we define  DC  ≝ {D ∈ D | C ⊆ D} 
 

Lemma 5: Suppose condition 2 is not satisfied.  Let Q ∈ D ⊆ F and  
let C be an F-homology-critical D-⋂ that is contained in Q but  
not contained in any member of F \ D. Then the set 
  (⋂DC) ∩ Attach(Q, F \ DC) = C ∩ Attach(Q, F \ DC) = C ∩ ⋃(F \ DC)  
is the F-core of C and is not acyclic. 
 

Proof:  As C is not contained in any member of F \ D, we have that  
 

            DC = FC   and hence    F \ DC = F \ FC = {F ∈ F | F ⊉ C} 
 

Thus    C ∩ ⋃(F \ DC) = C ∩ ⋃{F ∈ F | F ⊉ C} = CoreF(C),   which is  
not acyclic as C is F-homology-critical. // 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1: A Preliminary Lemma 
 

Recall: Whenever D ⊆ F and C is a D-⋂, we define  DC  ≝ {D ∈ D | C ⊆ D} 
 

Lemma 5: Suppose condition 2 is not satisfied.  Let Q ∈ D ⊆ F and  
let C be an F-homology-critical D-⋂ that is contained in Q but  
not contained in any member of F \ D. Then the set 
  (⋂DC) ∩ Attach(Q, F \ DC) = C ∩ Attach(Q, F \ DC) = C ∩ ⋃(F \ DC)  
is the F-core of C and is not acyclic. 
 

Proof:  As C is not contained in any member of F \ D, we have that  
 

            DC = FC   and hence    F \ DC = F \ FC = {F ∈ F | F ⊉ C} 
 

Thus    C ∩ ⋃(F \ DC) = C ∩ ⋃{F ∈ F | F ⊉ C} = CoreF(C),   which is  
not acyclic as C is F-homology-critical. // 
 
Also recall: Corollary 2: Let Q ∈ D ⊆ F. Then Q is ℙ-homology-simple for D  
                      in F  if and only if  Attach(Q, F \ S) is acyclic for all S ⊆ D. 
 

We now prove     not 2 ⇒ not 1    by showing (for Q ∈ D ⊆ F) that:  
         If (⋂DC) ∩ Attach(Q, F \ DC) is not acyclic, then 
         it is not true that “Attach(Q, F \ S) is acyclic for all S ⊆ D ”. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1: 
Properties of Acyclic Polyhedra 

 

Property A: Let S and T be polyhedra that satisfy any two of the 
following conditions. Then S and T satisfy all three conditions: 
 

 1. Each of S and T is acyclic.   2. S ∩ T is acyclic.    3. S ∪ T is acyclic. 
 

Property A follows from a standard result of algebraic topology––the 
Mayer-Vietoris exact sequence for reduced homology of polyhedra: 
 

… ⟶ 𝐻𝐻�𝑝𝑝(S∩T) ⟶ 𝐻𝐻�𝑝𝑝(S) ⊕ 𝐻𝐻�𝑝𝑝(T) ⟶ 𝐻𝐻�𝑝𝑝(S∪T) ⟶ 𝐻𝐻�𝑝𝑝−1(S∩T) ⟶ 𝐻𝐻�𝑝𝑝−1(S) ⊕ 𝐻𝐻�𝑝𝑝−1(T) ⟶ … 
 

Property B: Let P be a finite collection of polyhedra. Then the following 
are equivalent: 
   (i)  Every nonempty subcollection of P has an acyclic intersection: 
          ⋂P' is acyclic whenever ∅ ≠ P' ⊆ P. 
   (ii) Every nonempty subcollection of P has an acyclic union: 
         ⋃P' is acyclic whenever ∅ ≠ P' ⊆ P. 
 

Property B follows from Property A by induction on the collection's size. 
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Recall:  MAIN THEOREM 1 Let F be a finite set of polyhedra such that every  
                F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
        1. Q is ℙ-homology-simple for D in F.  
        2. Every F-homology-critical D-⋂ contained in Q is also  
          contained in a member of F \ D. 
 

              Notation: If C is any D-⋂, then:   DC  ≝ {D ∈ D | C ⊆ D} 
 

  Lemma 5: Suppose condition 2 is not satisfied. Let Q ∈ D ⊆ F and let  
               C be an F-homology-critical D-⋂ that is contained in Q but not  
               contained in any member of F \ D.  Then: 
         (⋂DC) ∩ Attach(Q, F \ DC) is the F-core of C and is not acyclic. 
 

Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
  

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC})  
            = Attach(Q, F \ DC) ∩ ⋂DC        is not acyclic, by Lemma 5. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC})  
       = Attach(Q, F \ DC) ∩ ⋂DC        is not acyclic, by Lemma 5. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC}) is not acyclic, by Lemma 5. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC}) is not acyclic, by Lemma 5. 
 

Moreover: 
 

(b) The ⋂ of any nonempty subcollection of  {Q∩D | D ∈ DC} is an 
                                                 acyclic superset of Q∩⋂DC = Q∩C = C. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC}) is not acyclic, by Lemma 5. 
 

Moreover: 
 

(b) The ⋂ of any nonempty subcollection of  {Q∩D | D ∈ DC} is an 
                                                 acyclic superset of Q∩⋂DC = Q∩C = C. 
 

Recall:  Property B Let P be a finite collection of polyhedra. Then the following 
    are equivalent: 
        (i)  Every nonempty subcollection of P has an acyclic intersection: 
        (ii) Every nonempty subcollection of P has an acyclic union: 
 

 
 

 



112 
 

Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC}) is not acyclic, by Lemma 5. 
 

Moreover: 
 

(b) The ⋂ of any nonempty subcollection of  {Q∩D | D ∈ DC} is an 
                                                 acyclic superset of Q∩⋂DC = Q∩C = C. 
 

Recall:  Property B Let P be a finite collection of polyhedra. Then the following 
    are equivalent: 
        (i)  Every nonempty subcollection of P has an acyclic intersection: 
        (ii) Every nonempty subcollection of P has an acyclic union: 
 

(b) and Property B imply: 
 

(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC}) is not acyclic, by Lemma 5. 
 

(b) The ⋂ of any nonempty subcollection of  {Q∩D | D ∈ DC} is an 
                                                 acyclic superset of Q∩⋂DC = Q∩C = C. 
Recall:  Property B Let P be a finite collection of polyhedra. Then the following 
    are equivalent: 
        (i)  Every nonempty subcollection of P has an acyclic intersection: 
        (ii) Every nonempty subcollection of P has an acyclic union: 
(b) and Property B imply: 
(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied. To do this, we first note that: 
 

(a) ⋂({Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC}) is not acyclic, by Lemma 5. 
 

(b) The ⋂ of any nonempty subcollection of  {Q∩D | D ∈ DC} is an 
                                                 acyclic superset of Q∩⋂DC = Q∩C = C. 
Recall:  Property B Let P be a finite collection of polyhedra. Then the following 
    are equivalent: 
        (i)  Every nonempty subcollection of P has an acyclic intersection: 
        (ii) Every nonempty subcollection of P has an acyclic union: 
(b) and Property B imply: 
(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
BUT, (a) and Property B imply: 
(d) ∃ a nonempty subcollection of {Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC} 
      whose ⋃ is not acyclic. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied.  
(a), (b), and Property B imply: 
(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
(d) ∃ a nonempty subcollection of {Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC} 
      whose ⋃ is not acyclic. 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
 

We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied.  
(a), (b), and Property B imply: 
(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
(d) ∃ a nonempty subcollection of {Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC} 
      whose ⋃ is not acyclic. 
 

(c) and (d) imply: 
(e)  ∃ T ⊆ DC : Attach(Q, F \ DC)  ∪  ⋃{Q∩D | D ∈ T} is not acyclic. 
======================  
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied.  
(a), (b), and Property B imply: 
(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
(d) ∃ a nonempty subcollection of {Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC} 
      whose ⋃ is not acyclic. 
(c) and (d) imply: 
(e)  ∃ T ⊆ DC : Attach(Q, F \ DC)  ∪  ⋃{Q∩D | D ∈ T} is not acyclic. 
====================== 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

Suppose 2 is not satisfied. Then ∃ an F-homology-critical D-⋂, C, such 
that C is contained in Q but C is not contained in any member of F \ D. 
We will deduce that Q is not ℙ-homology-simple for DC in F, which  
implies 1 is also not satisfied.  
(a), (b), and Property B imply: 
(c) The ⋃ of any nonempty subcollection of  {Q∩D | D ∈ DC} is acyclic. 
(d) ∃ a nonempty subcollection of {Attach(Q, F \ DC)} ∪ {Q∩D | D ∈ DC} 
      whose ⋃ is not acyclic. 
(c) and (d) imply: 
(e)  ∃ T ⊆ DC : Attach(Q, F \ DC)  ∪  ⋃{Q∩D | D ∈ T} is not acyclic. 
====================== 
(f) For all T ⊆ DC we have that:                                                                           
        Attach(Q, F \ DC)  ∪  ⋃{Q∩D | D ∈ T} = Q or Attach(Q, F \ (DC \ T))   
                                                             according to whether Q ∈ T or Q ∉ T. 
As Q is acyclic, (e) and (f) imply:   
      ∃ T ⊆ DC : Attach(Q, F \ (DC \  T)) is not acyclic. 
====================== 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

As Q is acyclic, (e) and (f) imply:   
      ∃ T ⊆ DC : Attach(Q, F \ (DC \  T)) is not acyclic. 
====================== 
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Proof of the 1 ⇒ 2 Part of Main Theorem 1 
 

As Q is acyclic, (e) and (f) imply:   
      ∃ T ⊆ DC : Attach(Q, F \ (DC \  T)) is not acyclic. 
====================== 
Equivalently: 
      ∃ S ⊆ DC : Attach(Q, F \ S) is not acyclic. 
 

Equivalently (by Corollary 2): 
      Q is not ℙ-homology-simple for DC in F. 
 
 

So we have shown that 1 is not satisfied. This completes the proof. // 
 
 

Recall:   Corollary 2: Let Q ∈ D ⊆ F. Then Q is ℙ-homology-simple for D   
  in F if and only if  Attach(Q, F\ S) is acyclic for all S ⊆ D. 
 

              MAIN THEOREM 1 Let F be a finite set of polyhedra such that every  
                F-⋂ is acyclic, and let Q ∈ D ⊆ F. Then the following are equivalent: 
        1. Q is ℙ-homology-simple for D in F.  
        2. Every F-homology-critical D-⋂ contained in Q is also  
          contained in a member of F \ D. 
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Summary (1) 
 

•  A thinning algorithm simplifies a binary image by reducing its  
    foreground to a thin "skeleton" in a "topology-preserving" way. 
 

•   Bertrand's critical kernels have been studied extensively by  
    Bertrand and Couprie, who have used them to design many  
    parallel thinning algorithms that automatically satisfy the 
    requirement of being topology-preserving. 
 

•   This talk has presented a variant of the concept of critical kernels:  
    homology-critical kernels. For sets of grid cells of a 2D, 3D, or 4D  
    Cartesian grid, homology-critical and critical are equivalent.                    

 

•  Many results about critical kernels of such sets become valid for sets    
    of arbitrary convex polytopes of any dimension (and, more generally,  
    sets of arbitrary acyclic polyhedra whose nonempty intersections are    
     acyclic) if they are restated as results about homology-critical kernels. 
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                                       From Wikimedia Commons, the free media repository 
      File: Polygons bundle-01.svg   Date: Aug. 11, 2018   Author: Matt Grünewald 
                                                  https://creativecommons.org/licenses/by-sa/4.0/deed.en 
 
 

A 2D example of a  
collection of polyhedra  
to which the main results  
of this talk would apply: 
 
•  The polyhedra here are the 
   2D convex polytopes  
   bounded by the gray lines. 
 

• The green parts of this 
  drawing are irrelevant.  

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Summary (2) 
 

• One formulation of the requirement that a thinning algorithm be  
   "topology-preserving" is that the set of deleted image elements satisfy  
   the condition of being homology-simple in the image foreground F. 
 

• For binary images on grid cells of a 2D, 3D, or 4D Cartesian grid, a  
   fundamental theorem of Bertrand & Couprie (2009) relating to critical  
   kernels provides a useful local necessary and sufficient condition for all  
   subsets of a given set of image elements to be homology-simple in F. 
 

• Main Theorem 2 substitutes homology-critical for critical in the  
   Bertrand-Couprie theorem, to give an analogous necessary and  
   sufficient condition that is valid for binary images on sets of arbitrary  
   convex polytopes of any dimension (even if some polytopes have  
   overlapping interiors) and, more generally, arbitrary acyclic polyhedra  
   whose nonempty intersections are acyclic. 
 

• When F is a set of 3D Cartesian grid cells, Bertrand & Couprie (2014)  
   established that their results can be stated in terms of the common  
   neighbors of essential cliques (instead of cores of F-intersections).  
   This is also true of our main results if F is strongly normal (2-Helly). 


