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Abstract. We introduce a method to construct morphological opera-
tions in a higher-dimensional digital space from a collection of set opera-
tions along digital isothetic lines in a space. First, we prove that the 2n-
neighbourhood in an n-dimensional digital space is decomposed into the
2(n−1)-neighbourhoods in the mutually orthogonal (n−1)-dimensional
digital spaces. Second, we derive a method to construct the object bound-
ary in an n-dimensional digital space form the digital boundaries in the
mutually orthogonal (n − 1)-dimensional digital spaces. This decompo-
sition and construction relation of the neighbourhoods and boundaries
implies that the object boundary in an n-dimensional digital space can
be computed as the union of the endpoints of isothetic digital lines in-
tersecting with the digital object in the digital space.

1 Introduction

We develop a method to construct higher-dimensional digital morphological op-
erations from a collection of one-dimensional set operations along digital isothetic
lines in a space. This decomposition property allows us to construct the neigh-
bourhood operations in a fine digital space from these in coarse digital spaces
[1]. This construction method of the neighbourhood operations allows us to de-
fine and compute the boundary of digital objects in a higher-dimensional digital
space [2] using set operations on digital isothetic lines.

2 Mathematical Preliminaries

Setting Rn to be an n-dimensional Euclidean space, we express vectors in Rn as
x = (x1, x2, · · · , xn)>. Let Z be the set of all integers. The n-dimensional digital
space Zn is set of all x for which all xi are integers.

Definition 1. The voxels centred at the point y ∈ Zn in Rn is

V(y) =

{
x

∣∣∣∣ |x− y|∞ ≤ 1

2

}
. (1)



In this paper, we deal with the connectivity and adjacency of the centroids of
the voxels [3], which are elements of Zn.

The sets F⊕G and F	G such that

F⊕G =
⋃
y∈G

(⋃
x∈F

{x+ y

)
, F	G =

⋂
y∈G

(⋃
x∈F

{x+ y}

)
(2)

are called the Minkowski addition and Minkowski subtraction [4] of F and G,
respectively. The translation of F by a ∈ Zn is

F(a) =
⋃
x∈F

{x+ a} = F⊕ {a}. (3)

For the Minkowski addition and subtraction, the relations

F	G = F⊕G, (4)

F⊕ (G ∪H) = (F⊕G) ∪ (F⊕H), (5)

F	 (G ∪H) = (F	G) ∩ (F	H) (6)

are satisfied. Furthermore, we obtain the following lemma.

Lemma 1. If F ∩G = ∅, the equalities

(F ∪G)⊕H = (F⊕H) ∪ (G⊕H), (7)

(F ∪G)	H = (F	H) ∪ (G	H) (8)

are satisfied.

(Proof)

(F ∪G)⊕H =
⋃
x∈H

(F ∪G)(x)

= {x+ y|∀x ∈ H, ∀y ∈ (F ∪G)}
= {x+ y|∀x ∈ H, ∀y ∈ F} ∪ {x+ y|∀x ∈ H, ∀y ∈ G}
= (F⊕H) ∪ (G⊕H),

(F ∪G)	H =
⋂
x∈H

(F ∪G)(x)

= {x+ y|∀x ∈ H, ∃y ∈ (F ∪G)}
= {x+ y|∀x ∈ H, ∃y ∈ F} ∪ {x+ y|∀x ∈ H, ∃y ∈ G}
= (F	H) ∪ (G	H).

2

For F ⊂ Zn, we define

Fk = {x |x ∈ F, xk = 0} (9)



and
Fkα = {x |x ∈ Fk ⊕ {αek}, α ∈ Z}. (10)

For

α+(k) = max
F∩Fkα 6=∅

α, α−(k) = min
F∩Fkα 6=∅

α, (11)

setting
N (k) = {α|α−(k) ≤ α ≤ α+(k)}, (12)

Fkα satisfies the relation

F =

n⋃
k=1

 ⋃
α∈N (k)

Fkα

 . (13)

Equation (13) is the multidirectional multislice decomposition of a digital point
set. Furthermore, the relations

Fkα =

n−1⋃
l=1

 ⋃
β∈N (l)

Fkα lβ

 , (14)

Fkα lβ , =

n−2⋃
m=1

 ⋃
γ∈N (m)

Fkα lβ mγ

 (15)

are satisfied. Equations (13), (14) and (15) derive the hierarchical decomposition
of the point sets in the form

Fk(l)α(l) =

n−l⋃
k(l)=1

 ⋃
α(l)∈N (k(l))

Fk(l)α(l)

 (16)

for l = 0, 1, 2, · · · , n − 1. Figure 1 shows the multidirectional multislice decom-
position of a digital point set in a three-dimensional digital space.

Fig. 1. Digital point set and its decomposition. The multidirectional multislice decom-
position of a digital point set in a three-dimensional digital space is shown.



3 Neighbourhood Operations

The 2n-neighbourhood of the origin in Zn is

Nn = {x | |xi| = 1, x = (x1, x2, · · · , xn)>}. (17)

Let N(x) = N⊕ {x} for x ∈ Zn.

Definition 2. If y ∈ N(x) and x ∈ N(y), x and y are connected to each other.

Definition 3. For y 6∈ N(x), if there exists at least one sequence pi+1 ∈ N(pi)
and pi ∈ N(pi+1) for i = 1, 2, · · · k− 1, the string {p}ki=1 is a path from p1 := x
to pk := y.

Definition 4. For a pair of points x and y, if there exists a path between them,
this pair is connected.

Definition 5. For F ∈ Zn, if there exist at least a path between any pairs of
points in F, F is a connected component.

On the digital line Z, the neighbourhood N1 of the point 0 is N1 = {−1, 1}
and a digital object is a string of points O = {k}mk=n for m > n and m,n ∈ Z.
The Minkowski addition and subtraction for a pair of sets A and B on the digital
line Z are

A⊕B = {∪(a+ b) | a ∈ A, b ∈ B}, A	B = {∪(a− b) | a ∈ A, b ∈ B}. (18)

Example 1. The dilation and erosion of a collection of points are concatenation
and elimination of points to both endpoints of a string, respectively, such that

O⊕N1 = {k}m+1
n−1 , O	N1 = {k}m−1n+1 , (19)

assuming (m− 1) + (n+ 1) ≥ 0.

From the linear neighbourhood in Zn such that

N1
k = {x | |xk| = 1, xi = 0, i 6= k}, (20)

we can construct Nn as

Nn =

n⋃
k=1

N1
k, (21)

Nn =

n⋃
k=1

Nn−1
k , Nn−1

k = Nn \N1
k, (22)

Nn−1
k =

n−1⋃
l=1

Nn−2
kl , Nn−2

kl = Nn−1
k \N1

l , (23)

Nn−2
kl =

n−2⋃
m=1

Nn−3
klm , Nn−3

klm = Nn−2
kl \N1

m. (24)



Equations (22), (23) and (24) imply that a neighbourhood in a higher-dimensional
digital space can be decomposed into the union of neighbourhoods in lower-
dimensional digital spaces. This recursive relation is expressed as

Nn−l
k(1)k(2)···k(l) =

n−l⋃
k(l)=1

N
n−(l+1)
k(1)k(2)···k(l+1),

N
n−(l+1)
k(1)k(2)···k(l+1) = Nn−l

k(1)k(2)···k(l) \N1
k(l+1), (25)

for l = 0, 1, 2, · · ·n − 1. Figure 2 shows that the 8-neighbourhood in a four-
dimensional digital space is decomposed into four mutually orthogonal 6-neighbourhoods
in the three-dimensional digital spaces.

Fig. 2. Decomposition of a neighbourhood. The 8-neighbourhood in a four-dimensional
digital space is decomposed into four mutually orthogonal 6-neighbourhoods in the
three-dimensional digital spaces.

Figure 3 illustrates the neighbourhood operations on the horizontal and ver-
tical isothetic lines on a digital plane. The connectivity of the four connected
object shown in (a) is computed by using the connectivity on the horizontal and
the vertical isothetic lines on the digital plane.

4 Digital Complex and Digital Object

Let ek be the unit vector whose kth element is 1. The digital n-simplex with
2n-connectivity in Zn is

S =

{
v(ε1, ε2, · · · , εn)

∣∣∣∣∣v(ε1, ε2, · · · , εn) =

n∑
k=1

εkei, εi ∈ {0, 1}

}
. (26)

We define the digital n-complex using S.

Definition 6. The digital n-complex is a union of connected simplices.

Definition 7. The digital thick n-complex is a union of simplices connected by
(n− 1)-simplices.



(a) (b) (c)

Fig. 3. One-dimensional operations for a two-dimensional object. (a) Four-connected
object on the digital plane. (b) Neighbourhood operations on the horizontal isothetic
lines on the digital plane. (c) Neighbourhood operations on the vertical isothetic lines
on the digital plane.

Using digital thick n-complices, we define a digital object.

Definition 8. If the number of connected simplices in a thick n-complex F is
finite and if the complement of F is a thick n-complex, we call F a digital object.

These definitions imply that an object contains k-simplices for k ≤ n− 1 as the
connected components. If n = 3, 1- and 2-simplices are called digital needle and
walls, respectively.

Definition 9. We call a connected component of k-simplices for k ≤ (n− 1) a
thin object.

The minimum thickness of a thin object is one.

Example 2. On Z, a digital object is a finite union of finite intervals

I =

n⋃
i=1

Ii, Ii = [ai, bi] (27)

for ai < ai+1 and bi < bi+1 with the condition (ai+1 − bi) ≥ 3.

Figure 4 shows a digital object in a one-dimensional digital space. From top
to bottom, a point set, its Euclidean embedding and the embedding of the dual
set are shown.

For an object F ∈ Zn, the embedding of F into Rn is

F =
⋃
x∈F

V(x). (28)



Fig. 4. Operations on a digital line. From top to bottom, a point set, its Euclidean
embedding and the embedding of the dual set are shwon.

The polytope F is an isothetic Nef-polytope [5], which is a union of voxels
connected by the faces of voxels. The vertices of F lie on the dual grid

Dn = Zn +

{
1

2
e

}
, e =

n∑
i=1

ei (29)

of Zn.

5 Digital Boundary Manifold

We define the boundary of a point set in Zn.

Definition 10. For a point set F, we call

∂−F = F \ (F	Nn), ∂+F = (F⊕Nn) \ F (30)

the internal and external boundaries of F, respectively.

For the internal and external boundaries, we have the following relations

F \ (F	Nn) =

n⋃
k=1

⋃
α∈N (k)

(
Fkα \ (Fkα 	Nn−1

k )
)
, (31)

(F⊕Nn) \ F =

n⋃
k=1

⋃
α∈N (k)

(
(Fkα ⊕Nn−1

k ) \ Fkα
)
. (32)

These properties imply the following theorem.

Theorem 1. The boundary ∂±F of an n-dimensional digital object F is the
union of its (n− 1)-dimensional boundaries.



Therefore, it is possible to construct ∂±F from ∂±Fkα. Furthermore, eqs. (14),
(22) and (23) imply the relations

Fkα \ (Fkα 	Nn−1
k ) =

n−1⋃
l=1

⋃
β∈N (l)

(
Fkα lβ \ (Fkα lβ 	Nn−2

kl )
)
, (33)

(Fkα ⊕Nn−1
k ) \ Fkα =

n⋃
l=1

⋃
β∈N (l)

(
(Fkα lβ ⊕Nn−2

kl ) \ Fkα lβ
)
. (34)

Decomposing both a digital object and its neighbourhood by using eqs. (16) and
(25), respectively, we have the recursive forms

Fk(l)α(l) \ (Fk(l)α(l) 	Nn−l
k(1)k(2)···k(l))

=

n−l⋃
k(l+1)=1

⋃
α(l+1)∈N (k(l+1))

(
Fk(l+1)α(l+1) \ (Fk(l+1)α(l+1) 	Nn−l

k(1)k(2)···k(l+1))
)
,

(35)

(Fk(l)α(l) ⊕Nn−l
k(1)k(2)···k(l)) \ Fk(l)α(l)

=

n−l⋃
k(l+1)=1

⋃
α(l+1)∈N (k(l+1))

(
(Fk(l+1)α(l+1) ⊕Nn−l

k(1)k(2)···k(l+1)) \ Fk(l+1)α(l+1)

)
(36)

for the internal and external digital boundaries, where l = 0, 1, 2, · · · , n − 2.
Using these relations recursively, we can construct the boundary-detection algo-
rithm for n-dimensional digital objects from one-dimensional boundary detection
algorithms.

Let
l(k,αk) = {x = tek +

∑
i6=k

αiei, αi ∈ Z}, (37)

where αk = {αi}ni=1, i 6=k, and

Fk,α = F
⋂

l(k,αk). (38)

Then, by computing the one-dimensional internal and external boundaries

∂−Fk,α = Fk,αk \ (Fk,αk 	N1), (39)

∂+Fk,αk = (Fk,αk ⊕N1) \ Fk,αk (40)

for all {ek,αk}nk=1, the n-dimensional internal and external boundaries, respec-
tively, are constructed as

∂−F =
⋃
k

⋃
αk

∂−Fk,αk , (41)

∂+F =
⋃
k

⋃
αk

∂+Fk,αk . (42)



Example 3. For I in eq. (27), we have the expression

I =

n⋃
i=1

{
ai −

1

2
, bi +

1

2

}
. (43)

Since (
ai+1 −

1

2

)
−
(
bi +

1

2

)
= (ai+1 − bi)−

1

2
− 1

2
≥ 2, (44)

on the background between a pair of successive intervals Ii and Ii+1, it is possible
to place at least two one-dimensional voxels V(k) = {x | |x− k| ≤ 1} for k ∈ Z.

There exist 3n points in the region

C(a) = {x||x− a|∞ ≤ 1} (45)

around a point a. For the point a ∈ Zn, if

(∂+F ∪ ∂−F)
⋂

C(a) = C(a), (46)

the point a lies on a locally flat manifold. Furthermore, if the point a lies on a
corner, the relation

(∂+F ∪ ∂−F)
⋂

C(a) ⊂ C(a) (47)

is satisfied. Equation (47) implies the relation |(∂+F
⋃
∂−F)

⋂
C(a)| < 3n.

The corner points of a digital object F may separate both the internal bound-
ary ∂−F and external boundary ∂−F into portions. Using the corners of the
internal and external boundaries of the complement F of the digital object, we
refine the connectivity of both the internal and external boundaries.

Definition 11. If there exists at least one path between all pairs of points on the
internal and external boundaries, these boundaries are called the refined internal
and external boundaries, respectively.

We call the point sets

C− = (∂−F
⋃
∂+F) \ (∂−F

⋂
∂+F), (48)

C+ = (∂+F
⋃
∂−F) \ (∂+F

⋂
∂−F) (49)

the singular points, which disturb the connectivity along the boundary curves.
The refined internal and external boundaries

∂−F = ∂−F
⋃

C−, ∂+F = ∂+F
⋃

C+. (50)

prevent the continuity. The reltions in (50) are expressed as

∂−F = ∂−F
⋃
∂+F, ∂+F = ∂+F

⋃
∂−F. (51)



(a)

(b)

Fig. 5. Refinement operation and boundary detection. (a) Union of the internal and
external boundaries. (b) Refinement operations at the corners preserve the continuity
of the internal and external boundaries.



Figure 5 illustrates the refinement operation for boundary detection. Re-
finement operations at the corners preserve the continuity of the internal and
external boundary.

∂±F is numerically computed by

∂±F = {∂±(H \ F)} \ ∂±F (52)

for a large hypercube H, which encloses F with the condition

min
x∈(H\F),y∈F

|x− y| ≥ 3 (53)

on the isothetic lines z = a+ tei for a ∈ Zn.

We define the digital set gradient on the boundary as

∂F =

 ⋃
x∈∂+F

V(x)

⋂ ⋃
x∈∂−F

V(x)

 . (54)

∂F is the boundary of the embedding F of the object F, that is, ∂F = ∂F .
Then, ∂F is an isothetic Nef-polytope whose vertices and faces lie on the dual
grid Dn. Therefore, we have the next theorem.

Theorem 2. ∂F is a union of (n− 1) simplices [6] in the dual grid.

For a thin object T in Zn, we call the embedding of T in Rn

T =
⋃
x∈T

V(x) (55)

an imperfect voxel object.

Definition 12. In Rn, if the complement of voxel object P is an imperfect voxel
object, we call P a perfect voxel object.

In a perfect voxel object, which is the Euclidean embedding of a thick object in
Zn, any imperfect voxel object is contained as connected components, although
imperfect voxel objects are permissible for embeddings of point sets based on
the well-composed sets [7].

Let [∂F] = [∂F ] be the closure of ∂F = ∂F . Since a voxel is a simplex in Dn,
we have the next theorem.

Theorem 3. The closure of [∂F] = [∂F ] is an n-complex in the dual grid.

For the thickness of [∂F] = [∂F ], we have the next theorem.

Theorem 4. The thickness of the complement of [∂F] = [∂F ] is at least two
voxels.



(Proof) On any isothetic digital line

L(k,z) = λek + z, z ∈ Zn

parallel to the vector ek, the linear object

F(k,z) = F
⋂

L(k, z)

is a thick one-dimensional object. The thickness of the complement of the em-
bedding F(k,z) is at least two voxels. 2

Theorem 4 implies the following statement on the embedding of digital ob-
jects in a digital space into Euclidean space.

Theorem 5. An isothetic Nef-polytope F and its complement are perfect voxel
objects.
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